Modulating the ribosome function by small molecules

Alexander Mankin

Center for Biomolecular Sciences University of Illinois at Chicago

Traditionally, all ribosomal antibiotics were viewed as global inhibitors of translation

Most antibiotics that target large ribosomal subunit arrest the ribosome at specific mRNA sites

What are the molecular mechanisms of context specificity of antibiotic action?

Ribosome profiling as a tool for revealing context-specificity of antibiotic action

Ingolia et al. (2009) Science, 324, 218

Peptidyl transferase center (PTC)

Linezolid LZD

Carter et al. (1948) Science; Zurenko et al. (1996) Antimicrob Agents Chemother

CHL and LZD should inhibit formation of **every** peptide bond because they should compete with **any** aminoacyl-tRNA

Chloramphenicol

Linezolid

Leach et al. (2007) Mol Cell, 26, 393; Wilson et al (1998) PNAS, 105, 13339; Dunkle et al. (2010) PNAS,107, 17152

What are the sites where CHL and LZD arrest translation?

calculate difference ('fold change') in the ribosome density codon-by-codon

Linezolid and chloramphenicol predominantly inhibit translation when Ala appears in the penultimate position of the nascent protein

The penultimate amino acid of the nascent protein participates in creating a T. thermophilus high-affinity antibiotic site

P site: Met-Ala-Ile-ACCA A site: CACCA CHL

A-site

Syroegin et al., NSMB in press

Tsai et al., NSMB in press

nascent protein chain affects the rRNA structure

23S rRNA forms the drug binding site

penultimate alanine participate in creating the high-affinity site

Tsai et al., NSMB in press

Context-specific mode of action of chloramphenicol and oxazolidinones

Principles of context specificity of PTC-binding phenicol and oxazolidinone antibiotics

> Nascent peptide participates in formation of the antibiotic binding site

Context-specificity of phenicol and oxazolidinones relies on a direct interaction of the nascent peptide with the PTC-bound antibiotic

EVERNIMICIN (EVN)

Arenz et al., (2016) PNAS; Krupkin et al. (2016) PNAS

EVERNIMICIN (EVN)

Evernimicin arrests translation at specific sites

toeprinting

Orelle et al. (2013) Antimicrob Agents Chemother; Mangano et al. (2022) in preparation

Specific A-site codons (or the incoming amino acids) are conducive to EVN action

Mangano et al. (2022) in preparation

Mangano et al. (2022) in preparation

Tri-peptide motifs define the sites of evernimicin action

Mangano et al. (2022) in preparation

How can the nascent peptide and incoming amino acid define the site of EVN action?

EVN likely allows aa-tRNA to briefly enter the PTC active site

Arenz et al., (2016) PNAS; Morse et al. (2020) PNAS

Model of site-specific action of orthosomycins

context which is conducive to the drug action

Principle of context specificity of the accommodation corridor-binding orthosomycin antibiotics

Nascent peptide and acceptor amino acid affect the efficiency of peptide bond formation brief visit in the aa-tRNA into the PTC active site

Why should we care?

Antibiotic resistance mechanisms exploit context specificity of antibiotic action

Ribosome-protection proteins confer resistance by dislodging the antibiotic from the ribosome

PoxtA renders cells resistant to CHL and LZD, but does not interact with the drug

Many antibiotic resistance genes are inducible

Programmed translation arrest is required for induction of resistance

cmlA is an inducible chloramphenicol resistance gene

emtA is an rRNA methyltransferase that confers resistance to evernimicin

Mann et al. (2001) Mol Microbiol; Mangano et al. (2022) in preparation

Conclusions

- Many (possibly most and maybe all) ribosomal antibiotics act in a contextspecific manner.
- Determinants of specificity often reside in the sequence of the nascent protein chain
- The incoming acceptor amino acid may critically affect the extent of translation arrest imposed by antibiotic
- Unraveling context specificity of ribosome-targeting antibiotics is critical for understanding their mode of action and operation of the resistance mechanisms

Nora Vázquez-Laslop

ACKNOWLEDGEMENTS

Kyle Mangano

James Marks

Dorota Klepacki

Mankin/Vázquez-Laslop lab

Krishna Kannan Cedric Orelle Priya Sothiselvam Maxim Svetlov Teresa Szal Sezen Meydan Amira Kefi University of Illinois (UIC)

Yury Polikanov

Egor Syroegin

University of California (UCSF)

Danica Fujimori

Kaitlyn Tsai

Stanford University

Joseph Puglisi

Choi Junhong

Lund University

Gemma Atkinson

