Combination Eravacycline Therapy for Carbapenem-Resistant Acinetobacter baumannii Pneumonia

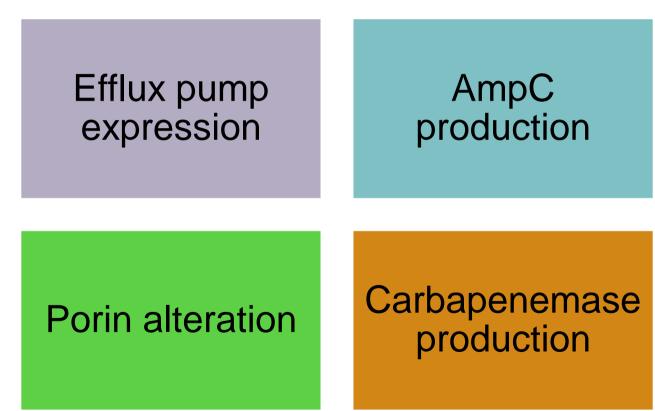
Melissa Jackson, PharmD PGY-2 Infectious Diseases Pharmacy Resident Parkland Health and Hospital System

Acinetobacter baumannii

- Soil
- Water
- Human skin
- Environmental contamination

Environmental Sources

• A. calcoaceticus/baumannii complex

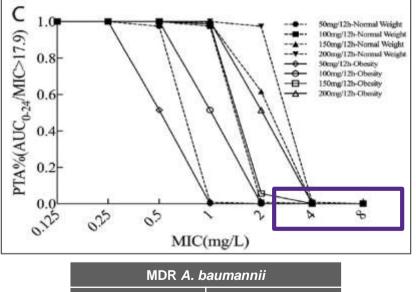

Number of Organisms by Geographic Region (%)					
Infection Type	North America	Asia-Pacific	Latin America	Europe	Total
Pneumonia in hospitalized patients	1460 (41.4)	1271 (54.6)	1297 (38.5)	1867 (41.2)	5895 (42.9)
Bloodstream	1176 (33.3)	594 (25.5)	1548 (46.0)	1805 (39.8)	5123 (37.3)
Skin & Skin Structure	620 (17.6)	422 (18.1)	476 (14.1)	657 (14.5)	2175 (15.8)
Urinary tract	174 (4.9)	37 (1.6)	32 (1.0)	131 (2.9)	374 (2.7)
Intra-abdominal	32 (0.9)	1 (0.04)	0 (0)	53 (1.2)	86 (0.6)
Others	65 (1.8)	2 (0.09)	14 (0.4)	18 (0.4)	99 (0.7)

Gales AC et al. Open Forum Infect Dis. 2019;6(Suppl 1):S34-36

Resistance Mechanisms

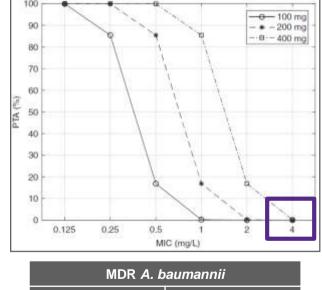
Gales AC et al. Open Forum Infect Dis. 2019;6(Suppl 1):S34-36

• Greater *in vitro* potency compared to other tetracycline analogs


	All A. baumannii		MDR A. baumannii	
	MIC ₅₀	MIC ₉₀	MIC ₅₀	MIC ₉₀
Minocycline (N = 1598/1130)	2	16	4	16
Tigecycline (N = 2097/1502)	2	4	4	8
Eravacycline (N = 2097/1502)	0.5	1	0.5	2

Morrissey I et al. Antimicrob Agents Chemother. 2020;64(3):e01699-19.

Tetracyclines: Limitations of Use


Tigecycline

MIC ₅₀	MIC ₉₀
4 mg/L	8 mg/L

Xie J et al. Antimicrob Agents Chemother. 2017;61(8):e00345-17

<u>Minocycline</u>

 MIC₅₀
 MIC₉₀

 4 mg/L
 16 mg/L

Tsakris A et al. J Antimicrob Chemother. 2019;74(2):295-7

Study Design

• Retrospective case series at large county hospital between April 1 to Oct 1st, 2020

Objective

• Describe the use of combination eravacycline therapy of the treatment of carbapenem resistant *A. baumannii* (CRAB) pneumonia in critically ill SARS-CoV-2 patients

Inclusion Criteria

- Receipt of \geq 1 dose of eravacycline
- Diagnosed with SARS-CoV-2
- Respiratory culture positive for CRAB leading to physician-documented diagnosis of pneumonia

Exclusion Criteria

CRAB bacteremia

Study Outcomes

Primary Outcomes

Microbiological resolution of CRAB

Repeat sputum cultures obtained and negative for CRAB

Clinical resolution of CRAB pneumonia

- Alive ≥ 48 hrs after end of therapy AND ≥ 1 of the following:
 - ≤14 days of therapy
 - Therapy not restarted within 48 hours after completion
 - Decrease in oxygen or pressor requirements from beginning to end of therapy

Secondary Outcomes

Frequency of patients requiring ≥14 days of therapy

Frequency of patients re-initiating therapy within 48 hours after completion of therapy

Baseline Characteristics

Characteristic	N = 26
Age, median (range)	53 (33 – 77)
Male sex, n (%)	16 (61.5)
Body mass index (BMI), n (%)	
Overweight (BMI: 25.0 – 29.9)	6 (23.1)
Class 1 obesity (BMI: 30.0 – 34.9)	8 (30.8)
Class 2 obesity (BMI: 35.0 – 39.9)	4 (15.4)
Severe obesity (BMI: ≥ 40.0)	8 (30.8)

Baseline Characteristics

Characteristic	N = 26
Pertinent comorbidities, n (%)	
Hypertension	17 (65.4)
Diabetes mellitus	15 (57.7)
Chronic kidney disease	2 (7.7)
Recent immunosuppressive therapy	2 (7.7)
Chronic liver disease	1 (3.8)
Chronic lung disease	1 (3.8)
Hematologic malignancy	1 (3.8)
HIV/AIDS (CD4 count < 200 cells/µL)	0 (0)
Neutropenia (ANC < 500 cells/µL)	0 (0)

Antibiotic Susceptibility

Table 2: In-vitro susceptibilities for CRAB isolates						
Antibiotic		Susceptibility rate, n (%)				
Antibiotic	Susceptible	Intermedia	te	Resistant	Not reported	
Ampicillin- sulbactam	15 (57.7)	9 (34.6)		1 (3.8)	1 (3.8)	
Colistin		20 (76.9)		1 (3.8)	5 (19.2)	
Cefepime	0 (0)	1 (3.8)		18 (69.2)	7 (26.9)	
Meropenem	0 (0)	0 (0)		25 (96.1)	1 (3.8)	
Ciprofloxacin	0 (0)	0 (0)		25 (96.1)	1 (3.8)	
Gentamicin	0 (0)	0 (0)		25 (96.1)	1 (3.8)	
Tobramycin	0 (0)	0 (0)		25 (96.1)	1 (3.8)	
Trimethoprim- sulfamethoxazole	0 (0)	0 (0)		25 (96.1)	1 (3.8)	
Table 2: Tigoousline Minimum Inhibiton: Concentration (MIC)						
Table 3: Tigecycline Minimum Inhibitory Concentration (MIC)						
MIC		0.25	0.5	1	Not reported	
Number of isolat	:es, n (%)	12 (46.2)	8 (31)	0 (0)) 6 (23.1)	

Treatment Regimens

Definitive Combination Therapy, n (%)	N = 26
Eravacycline + ampicillin-sulbactam	18 (69.2)
Eravacycline + inhaled colistin	1 (3.8)
Eravacycline + ampicillin-sulbactam + inhaled colistin	7 (26.9)

Characteristic	N = 26
Time from culture collection to definitive therapy (days), median (range)	2.5 (0 - 8)
Duration of combination therapy (days), median (range)	7.5 (4 – 27)

Primary Outcomes	
Microbiological resolution*, n (%)	13/18 (72.2)
Clinical resolution**, n (%)	19/26 (73.1)

*Repeat cultures obtained and negative for CRAB

**Alive \geq 48 hours after end of therapy <u>AND</u> one of the following: < 14 days of therapy, therapy not restarted within 48 hours after completion, or decrease in oxygen requirements

Secondary Outcomes	N = 26	
Required > 14 days of therapy, n (%)	1 (3.8)	
Restarted therapy within 48 hours after completion	0	

Limitations

Co-infection with SARS-CoV-2

Retrospective design

Small sample size

Eravacycline showed favorable microbiological and clinical outcomes Eravacycline can be considered as salvage therapy for the treatment of **CRAB** pneumonia Further studies needed to determine the efficacy of eravacycline for the treatment of CRAB pneumonia compared to other salvage therapies

Acknowledgements

- Jessica Ortwine, PharmD, BCIDP
- Wenjing Wei, PharmD, BCIDP
- Norman Mang, PharmD, BCIDP
- Bonnie Prokesch, MD

Email: melissa.jackson@phhs.org

