

An Epidemiologic Exploration of Vancomycin Resistance in *Clostridioides difficile*

Taryn A. Eubank, PharmD, BCIDP

T32 Infectious Diseases Fellow 2021 - 2023 Department of Pharmacy Practice and Translational Research University of Houston College of Pharmacy

Clostridioides difficile infection (CDI)

- The most common hospitalacquired infection in the USA and the leading cause of death due to gastroenteritis^{1,2}
- Only 2 antibiotics recommended as treatment³
 - Oral vancomycin serves as current mainstay of therapy

CDC's Antibiotic Resistance Threats in the United States, 2019.

- 1. Hall et al. Clin Infect Dis. 2012; 55:216-223.
- 2. Lessa et al. N Engl J Med. 2015; 372:825-834.
- 3. Johnson et al. Clin Infect Dis. 2021; 73:e1029-e1044.

Vancomycin role in CDI

- Culture and susceptibility testing not routinely conducted for *C. difficile*
 - Minimum inhibitory concentration (MIC) of > 2 mg/L considered vancomycin resistant^{1,2}
 - C. difficile thought to be universally susceptible to vancomycin but has increased by 3.6% since 2012³
- Hypothesis: recent increases in vancomycin use applies a selective pressure expediting resistance development

Coast Consortia

Role of *vanG* in vancomycin resistance

- Vancomycin inhibits cell wall synthesis through binding D-alanine-Dalanine terminal of the growing peptide chain
- Van genes modify the terminal D-ala-D-ala
 D-ala-D-X
- 85% of *C. difficile* carry a functional *vanG* operon¹
 - D-ala-D-ala
 D-ala-D-serine, decreasing vancomycin binding by ~7 times²
 - Generally silent gene; presence alone of *vanG* does not impact susceptibility³

- 1. Ammam et al. Can. J. Microbiol. 2013; 58:547-551.
- 2. Shen et al. J Antimicrob Chemother. 2020; 75(4):859-867.
- 3. Ammam et al. Mol Microbiol. 2013; 89:612-625.

Previous work with vanG

- Constitutive expression of *vanG* operon in ribotype
 027 strains linked to vancomycin tolerance¹
- Set of clinical isolates with elevated MICs found to have VanSR mutations leading to constitutive vanG expression¹
 - Strains survived concentrations up to 1,024 mg/L

We hypothesize *vanG* expression in *C. difficile* is higher than appreciated and expression will be predictive of poor clinical outcomes.

2022 – 2023 specific aims

- SA1: Vancomycin MICs
 - SA1.1 Agar dilution versus broth microdilution
 - SA1.2 Intra-lab comparison of agar dilution standard operating procedures
 - SA1.3 Vancomycin susceptibility by ribotype
- SA2: Epidemiology of *vanG*
- SA3: Clinical outcomes in relation to vanG expression

MIC reproducibility for *C. difficile*

Variable by both method and drug¹⁻⁴

Broth Microdilution (BMD)

- Pros
 - Shorter time commitment
 - Less cumbersome method
- Cons
 - MIC up to 4-dilution difference¹
 - Typically underestimates MIC^{1,2}

Agar Dilution (AD)

- Pros
 - Greater consistency and reproducibility
 - Better identifies resistance
- Cons
 - Time consuming
 - Cumbersome method

- 1. Hastey et al. Anaerobe. 2017; 44:73-77.
- 2. Citron et al. Diagn Microbiol Infect Dis. 2001; 70:554-556.
- 3. Moura et al. J Antimicrob Chemother. 2013; 68:362-365.
- 4. CLSI M11. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. 9th edition.

SA1: Lab standardization methods

- SA1.1: Agar dilution (AD) versus broth microdilution (BMD)
 - 30 isolates simultaneously evaluated
 - Broth microdilution performed with Brain Heart Infusion (BHI) broth + oxyrase
 - Incubated 24 hours
 - Agar dilution using brucella agar with hemin (5 mg/L), vitamin K1 (10 mg/L) and 5% (v/v) sheep blood
 - Incubated 48 hours

- SA1.2: Intra-lab standardization of AD MICs
 - 18 isolates evaluated by fellows at each lab simultaneously
 - Both fellows blinded to isolates and each read the completed plates
 - Incubated 48 hours

SA1: Lab standardization results and comparison

SA1.1 Inter-lab Standardization (AD versus BMD)

Method (no. isolates)	M	IC (mg/L)	-	% Resistant	Major error (%)	Very major error (%)	Essential
	Range	MIC ₅₀	MIC ₉₀				agreement (%)
AD (30)	0.5 - >16	1	1	6.67%	0.0%	6.67%	0.0%
BMD (30)	0.0625 - 0.5	0.125	0.25	0.0%	0.0%		

SA1.2 Intra-lab Standardization (AD)

Lab (no. isolates)	MIC (mg/L)						Esse	ntial	1
	Rang	ge	MI	C ₅₀	МІ	C ₉₀	Agreem	ent (%)	
Garey lab (18)	2 – 8	1 - 4	4	2	8	2	<u> </u>		R
Hurdle lab (18)	1 - 4		2		4		00.970		

Definitions: Major error: resistant results by the new method and susceptible results by the gold standard method; **Very major error:** susceptible result by the new method and a resistant result by the gold standard method ; **Essential agreement:** MICs within ± 1 dilution

SA1.3: Susceptibility per ribotype methods

- Comparison of MICs from 3 locally endemic ribotypes (RT):^{1,2} F014-020 (n=73), F027 (n=40), F106 (n=26)
 - MICs performed using AD (max concentration of 16 mg/L)
 - Strain typing by fluorescent PCR ribotyping

1. Gonzales-Luna et al. Emerg Microbes Infect. 2020; 9:341-347.

SA1.3: Susceptibility per ribotype results

Conclusions

- Agar dilution versus broth microdilution result in variable MICs with broth microdilution underestimating resistance
- Intra-lab comparison of agar dilution method found an essential agreement of 88.9%
- Resistance rates are similar between 3 virulent ribotypes with an overall rate of 5%

Next steps & future directions

- Expand cohort: goal of N = 600 (200 isolates per ribotype)
- Characterize *vanG* expression
- Investigate clinical outcomes associated with vanG expression

Acknowledgements

- The Garey Lab (University of Houston College of Pharmacy, Houston, TX)
 - PI: Dr. Kevin W. Garey, PharmD, MS, BCIDP
- The Hurdle Lab (Texas A&M Health Science Center, Houston, TX)
 - PI: Dr. Julian Hurdle, Ph.D.

• Funding: NIAID, T32 AI141349

- Dr. Barbara W. Trautner, MD, PhD
 - Baylor College of Medicine
- Dr. Blake Hanson, PhD
 - UT Health Sciences Center at Houston

