

Combined genotypic and phenotypic AST through gene expression profiling

Roby P. Bhattacharyya MD PhD

Assistant Professor of Medicine, MGH Division of Infectious Diseases & Harvard Medical School

Associate Member, Broad Institute

Texas AMR Conference, 20 Jan 2022

<u>rbhatt@broadinstitute.org</u> bhattacharyyalab.org

Disclosures

- None
- Some of this work was supported by an R01 from NIH/NIAID, awarded as an academia-industry partnership with NanoString

Antibiotics: a scarce societal good

Clatworthy AE et al, Nat Chem Biol 2007;3:541

Current bacterial diagnostics are too slow to meet the clinical mandate

- Every hour's delay to giving appropriate antibiotics increases mortality from severe sepsis by 7%
- Best-case scenario for growth-based AST is 2-3 days from presentation

This combination leads to empiric broadspectrum antibiotic use, feeding the cycle

- To break the cycle of escalating antibiotic use, diagnostics must be <u>fast</u> AND <u>accurate</u>
 - Ensure efficient deployment of scarce antibiotics
 - Potential to **resolve tension** between individual and society
 - Consider Oncology: from poisons to targeted therapy with molecular diagnostics

Genomics and AST

- How can we find evidence of **resistance** in genomic data?
 - Hydrolases, acetylases, efflux pumps
 - May even work better than phenotype in some cases, eg carbapenemase producers¹
 - Target site mutations? Gene inactivations?
 - Changes in expression or copy number??

Genomics and AST

- How can we find evidence of **resistance** in genomic data?
- How can we find evidence of **susceptibility** in genomic data?
 - Is this just the absence of (known) resistance determinants? Is that enough?
 - Works well in certain cases: MRSA, VRE, TB
 - But... these are corner cases
 - Consider: 13-68% of CRE^{2,3}, and >95% of carba-R Pseudomonas³, do NOT have carbapenemases

Genomics and AST

- How can we find evidence of **resistance** in genomic data?
- How can we find evidence of **susceptibility** in genomic data?
 - Is this just the absence of (known) resistance determinants? Is that enough?
 - Can't we just sequence everything and use machine learning / AI?
 - Correlates vs surrogates
 - Agnostic vs mechanistic

Genotypic vs phenotypic approaches for antibiotic susceptibility testing (AST)

Phenotypic AST

- Long the gold standard
- Detects **susceptibility** "answers the key question"
 - Also risks of errors eg carbapenemases: inoculum effect, heteroresistance
- Speed?
- Antibiogram as (very) low-res method to infer transmission

• Genotypic AST

- Capitalizes on WGS revolution
- Predicts resistance "by proxy" or "by correlate"
 - Risk of errors from undertraining, unexpected diversity, new mechanisms
- Speed? Cost? Implementation?
- "Collateral info": potential for built-in molecular epidemiology

What if we could do both in a single assay?

A new approach to AST through RNA detection: transcription as phenotype

- RNA sequence → genotype
- RNA abundance → phenotype
 - Transcriptional changes are among the earliest adaptations to stress
- Postulate: susceptible and resistant strains will exhibit differential gene expression upon antibiotic exposure
 - Rapid (minutes)
 - Agnostic to resistance mechanism

GoPhAST-R: <u>Genotypic + Phenotypic AST</u> through <u>RNA</u> detection

RNA signatures: an early, readily measurable distress signal

- RNA sequence → genotype
- RNA abundance → phenotype
 - Transcriptional changes are among the earliest adaptations to stress
- Enabling technology: NanoString

- Multiplexable (hundreds of transcripts in "one pot")
- Quantitative over 3-4 orders of magnitude
- Total assay time ~hours (hands-on time: ~minutes)
- No enzymology = direct from crude lysates
- Benchtop instrument for detection

Workflow: defining transcriptional signatures

Application: MDRO GNRs, multiple antibiotic classes

RNA-Seq: S and R strains respond differently to antibiotic exposure

Bhattacharyya RP et al, Nat Med 2019

GoPhAST-R: a small subset of transcripts predict AST

(top 10 antibioticresponsive transcripts, measured by NanoString hybridization assay)

Bhattacharyya RP et al, Nat Med 2019

D. Hung

N. Shoresh

J. Livny

S. Son

GoPhAST-R: machine learning predicts susceptibility from NanoString data

J. Livny

S. Son

Input: <u>NanoString data</u>, top 10 antibiotic-responsive transcripts

Model: random forest

²rediction

Output: probability of resistance

Reference (MIC)

GoPhAST-R)		Susc	Intd	Res
	Susc	97	5	1
	Non-susc (I or R)	6	23	107

Categorical agreement: 227/239 (95%)

- 3 discrepancies clearly due to errors w/ gold standard
- 8 of remaining 9 "missed close" (variability in gold standard too)

Bhattacharyya RP et al, Nat Med 2019

GoPhAST-R: simultaneous resistance gene detection enhances assay

GoPhAST-R: proposed workflow

- AST in <4 hours (<30 min hands-on)
 - vs broth microdilution = 28 hrs from positive BCx
- Success direct from blood cultures
 - 71/72 (99%) correct from spiked BCx
 - 8/8 correct for real BCx
- Genotype: built-in carbapenemase assay
- RNA-Seq data on ~50 bug-drug pairs

Bhattacharyya RP et al, Nat Med 2019

RNA signatures generalize across fluoroquinolones & aminoglycosides

Melanie Martinsen

Strains (ordered by CLSI classification)

RNA signatures generalize across beta-lactams

Strains (ordered by CLSI classification)

cell wall synthesis inhibitors

Martinsen et al, AAC 2021

RNA signatures generalize across beta-lactams

Strains (ordered by CLSI classification)

Melanie Martinsen

cell wall synthesis inhibitors

Martinsen et al, AAC 2021

Alex Jaramillo Cartagena

Beyond typical bacteria: slowgrowing species still transcribe fast

• Pilot fungal transcriptional signatures enable rapid AST on the same NanoString platform:

res

• Mycobacteria show transcriptional signatures in hours:

M. tuberculosis + various abx:

with A. van den Bossche, P. Ceyssens (Sciensano, Belgium)

ERG11

Summary: RNA-based detection for rapid bacterial ID and AST

- GoPhAST-R: antibiotic-induced transcriptional signatures are a fast, accurate, **phenotypic** measure of **antibiotic susceptibility**
 - Sensitive to $<10^5$ bacteria; assay time \sim 4 hrs
 - Clinical pilot on BCx underway
- Simultaneous detection of key genetic resistance determinants enhances AST accuracy, value
- Accuracy likely to improve with further training/testing
- Success in fungi, mycobacteria = possible pan-microbial approach to AST (work in progress)
- Goals: faster, cheaper, more sensitive, & more deployable assay
- What biology underlies these responses?
 - Shared pathways within, among classes? Adaptation? Signs of struggle?

Acknowledgments

- <u>Bhattacharyya lab</u>
 - Melanie Martinsen
 - Alex Jaramillo Cartagena
 - Eleanor Young
 - Kyra Taylor
 - Pierre Ankomah
 - Michelle Matzko
- Jonathan Livny
- Deb Hung & <u>Hung lab</u>
 - Peijun Ma
 - Lorrie He
 - Nirmalya Bandyopadhyay
 - Amy Barczak
 - Jim Gomez
 - Jamin Liu
 - Lidan Wu
 - Rob Rudy
 - Sophie Son
- Noam Shoresh

Broad Fungal Genomics

- Christina Cuomo
 Poppy Sephton-Clark
 - Jose Muñoz

Broad Bacterial Genomics

- Ashlee Earl
 - Gustavo Cerqueira
 - Alejandro Pironti
- Abigail Manson

bhattacharyyalab.org

rbhatt@broadinstitute.org

MGH

BWH

Virginia Pierce

• Evan Mojica

• Lisa Cosimi

• Tulip Jhaveri

Sanjat Kanjilal

Wadsworth Labs

• Jill Taylor

• Kim Musser

• <u>Funding</u>:

- NIAID
 - 1R01AI117043
 - 1R01AI153405
 - 1K08Al119157
- Broad Director's Fund
- MGH/MIT Innovation Discovery Grant
- MGH Pilot Translational Grant
- MGH ID Division

