

What is High Throughput Screening (HTS)?

- It is an experimental process
- ❖ A way of performing drug discovery research that:
 - ✓ Uses robust but simple experimental methods
 - ✓ Uses automation for highly repetitive activity
 - ✓ Typically run against a specific biological target
 - ✓ Used as an 'activity' filter
 - ✓ Quickly generates Big Data sets & Data management issues
- Primary goal: Eliminate most of test agents that do not affect the biological target.
- HTS can identify a starting place for a new probe or drug
- HTS can identify a new purpose for an approved drug

Assay Design: Types of Assays

HTS Assays

Biochemical Targeted Drug Discovery

Uses known/purified targets Enzymes

Receptors

Ion channels

Kinetics

Protein-Protein Interactions Homogeneous/Heterogeneous

Cell-based Phenotypic Drug Discovery

Phenotypic assays of unknown targets
Cell lines (primary/immortalized)
Patient Derived Xenografts
Reporters, Dyes, or Antibodies

Pathway-based – Reporters Morphology-based – Imaging Behavior-based – Zebrafish/C. elegans

The Deliverable = Identify compounds that modulate activity

Common Steps for any Screening Campaign

Target ID & Validation **Assay Development Assay Validation Primary Screen** Orthogonal & Secondary Screens

What is going to be screened?
Agonist, antagonist, or modulator?

How will it be screened? Appropriate assay controls? Rigor and Reproducibility

How good is the screening assay?

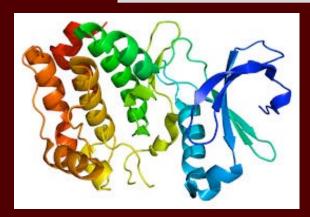
Were any 'Hits' identified?

Validate the hits as against the target?

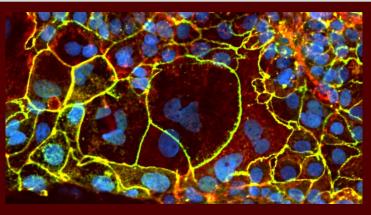
Assay Development

- Relevance: Does the readout unequivocally relate to the target?
- Specificity/Sensitivity: Is the readout specific for the target, sensitive enough?
- Reliability/Robustness: Are results reproducible inter- & intra-assay and statistically significant?
- Practicality: Do time, reagents, and effort correlate with quality and quantity of results?
- Feasibility: Can assay be run with resources at hand?
- Automation: In order to screen large numbers of compounds, can assay be automated and run in highly parallel format?
- Cost: Does cost of the assay permit scale-up for high-throughput screening?

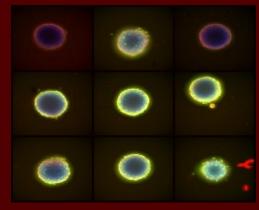
The quality of an assay determines the quality of data i.e., compromising on assay development can have substantial downstream consequences.

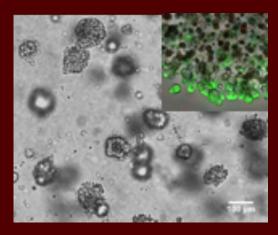

Eckstein, Jens. ISOA/ARF Drug Development Tutorial

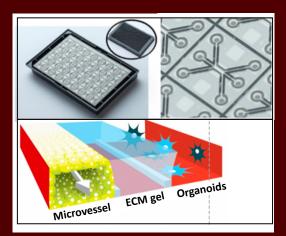
Assay Development


Key factors that must be addressed prior to screening:

- Appropriate controls
 - Positive Control Gives a response similar to what is expected from the screen
 - Negative Control Provides an indication of the baseline for the assay
 - The difference between them is the dynamic range of the assay
- Assay rigor, reproducibility, and signal stability
- Miniaturization and adaptation to automation
- Available secondary assays to test biological relevance and mechanisms of action


Model Systems Screened in the Core


Proteins (enzymes)


Cell Lines and PDX-derived

Spheroids

Organoids

Tissue Chips

Simple model organisms

High Throughput Research and Screening Center Resources

Stand alone liquid handling

Automated liquid handling platforms + TC Incubators

Robotically integrated Detection systems

Data & Image processing and secondary analysis

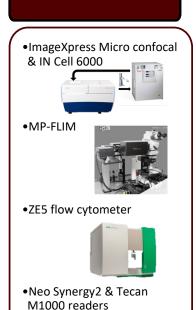
35 BIOVIA

Deep Learning Studios

•Biovia Pipeline Pilot

Multiflow

Mantis



•Tecan Evo

•Labcyte Echo

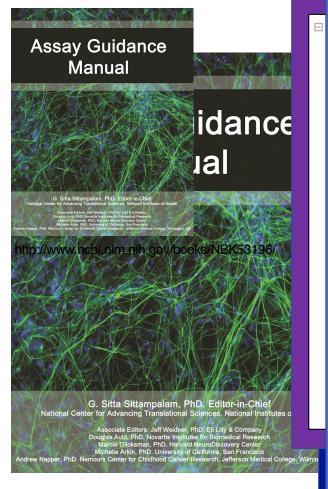
•Python

ANACONDA

•Fiji/ImageJ

Current Drug and Compound Collections

Library Focus	Library Focus
Approved Drug Library	Stem cell Differentiation Compound Library
	Cell cycle related compound Library
Oxidation-Reduction Compound Library	Apoptosis Compound Library
Anti-Metabolism disease Compound Library	Autophagy Compound Library
Mitochondrial Targeting Compound Library	DNA Damage _ Repair Compound Library
Epigenetics Compound Library	Ion Channel Inhibitor Library
	Endocrinology-Hormones Library
PI3K-AKT-mTOR Compound Library	Neuronal Signaling Compound Library
MAPK Inhibitor Library	
Tyrosine kinase inhibitor library	JAK STAT Compound Library
	Wnt_Hedgehog_Notch Compound Library
Selleck Bioactives Collection	
	Fluorochemical Library
Prestwick/Microsource Collections	Natural Compound Library


The Core maintains a collection of drugs and investigational agents approved for use in humans, bioactive compounds, natural products, and some small molecules.

The Core maintains > 35,000 testable agents.

Useful Resources

Site	Site URL
The Assay Guidance Manual	https://www.ncbi.nlm.nih.gov/books/NBK53196/
PubChem	https://pubchem.ncbi.nlm.nih.gov
Cancer Therapeutics Response Portal (CTRP)	https://portals.broadinstitute.org/ctrp.v2.1/
Wellcome Sanger Institute Genomics of Drug Sensitivity in Cancer (GDSC)	https://www.cancerrxgene.org
Center for Cancer Genomics (CCG)	https://www.cancer.gov/about-nci/ organization/ccg
Human Metabolome Database	https://hmdb.ca
Drug Bank	https://go.drugbank.com
Probes and Drugs	https://www.probes-drugs.org/home/

The Manage George Commendate the comment of the com

□ HTS Assay Validation

Philip W. Iversen, Benoit Beck, Yun-Fei Chen, Walthere Dere, Viswanath Devanarayan, Brian J Eastwood, Mark W. Farmen, Stephen J. Iturria, Chahrzad Montrose, Roger A. Moore, Jeffrey R. Weidner, and G. Sitta Sittampalam.

Published May 1, 2012; Last Update: October 1, 2012.

Abstract

- 1. Overview
- 2. Stability and Process Studies
- 3. Plate Uniformity and Signal Variability Assessment
- 4. Replicate-Experiment Study
- 5. How to Deal with High Assay Variability
- 6. Bridging Studies for Assay Upgrades and Minor Changes
- 7. References

Benoit Beck, Yun-Fei Chen, Walthere Dere, Viswanath Devanarayan, Brian J. Eastwood, Mark W. Farmen, Stephen J. Iturria, Phillip W. Iversen, Steven D. Kahl, Roger A. Moore, Barry D. Sawyer, and Jeffrey Weidner.

Published May 1, 2012; Last Update: November 20, 2017.

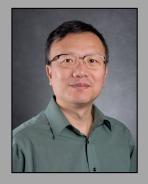
■ Minimum Significant Ratio – A Statistic to Assess Assay Variability

Joseph V. Haas, Brian J. Eastwood, Philip W. Iversen, Viswanath Devanarayan, and Jeffrey R. Weidner. Published November 1, 2013; Last Update: November 20, 2017.

Keierences

http://www.ncbi.nlm.nih.gov/books/NBK53196

IBT High Throughput Research and Screening Center "Our Team"



Specialized Expertise – "The Heart of the Core"

Scientific and Technical Staff: Industry level HTS, Imaging and Data Analysis, Informatics, Robotics, Automation, Tissue culture

The IBT High Throughput Research and Screening Center for Probe and Drug Discovery

Peter Davies, MD, PhD

Program Director

pdavies@tamu.edu

Clifford Stephan, PhD

Scientific Director

cstephan@tamu.edu

IBT Roundtable 6 Aug 2021