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… if the current trends continue,
the number of cancer cases diagnosed
annually by 2050 is likely to double as
a result of population aging.  So if we
as a society hope to head off the 
coming storm, we better get more 
serious about cancer prevention soon.

Prevention Advice
Vogelstein, Science Trans Med 4:127, 2012
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Prevention is as good as a cure 
Priorities for the US Cancer Moonshot Initiative face an uncertain funding future — but it must not 
ignore proven prevention programmes in favour of glitzy research. 

Following the September report, the Moonshot Task Force — a  
separate group looking at how government agencies can work together 
to accelerate cancer research — released its own recommendations. 
These, too, included unglamorous but vital initiatives, such as a push 
for stop-smoking strategies in people who receive Medicaid, a US 
health-care plan for those with limited resources. And it announced 

an offer from some car-sharing companies 
to give discounts to cancer patients travel-
ling to and from doctor’s appointments. This 
helps to tackle one of many logistical hurdles 
that contribute to low public participation in 
clinical trials. 

The more high-tech recommendations 
from the Moonshot Initiative are also worthy 

projects. They include large-scale genetic analysis of tumours to push 
forward the fledgling field of personalized medicine, and clinical-
trial networks to better harness the information gleaned from trials 
of immunotherapies and treatments for paediatric cancers. 

When budgets are constrained, it is important not to let the glitzy 
outshine the familiar. Too often in health research, straightforward 
prevention programmes, and the social science needed to implement 
them correctly, are pushed aside in favour of the basic research that 
fills this journal. A balance must be struck: the Cancer Moonshot and 
other initiatives should continue to emphasize the uptake of proven 
prevention strategies, even if the next administration tightens funds 
further than expected. ■

As the United States and the wider world tries to work out what 
President Donald Trump will and won’t do, one thing is clear: 
some Republican lawmakers feel no compulsion to govern 

until he takes office in January. This could leave funding for some of 
President Barack Obama’s scientific mega-initiatives — including the 
Precision Medicine Initiative and the Cancer Moonshot Initiative — in 
limbo until next year. At present, there is a push in Congress to delay 
any decisions on the budget and pass a continuing resolution that will 
hold funding levels steady until March. 

The Cancer Moonshot Initiative, one of the newest schemes on the 
block, had been scrambling to get its goals in order ahead of the budget 
decision in time to impress lawmakers with its worthiness. But it could 
face more months of uncertainty — a harsh outcome for an initiative 
that had already committed to an aggressive timeline of doubling the 
pace of cancer research in five years.

In recent months, the moonshot’s architects have laid out an  
ambitious menu of projects, and prioritizing those was always going 
to be a challenge. Given the absence of a clear fiscal future, deciding 
which projects take priority has become even more crucial. 

How to choose? It may be tempting to select and focus on the 
most superficially impressive and eye-catching science. But one of 
the moonshot’s greatest strengths has been its willingness to take on 
not only cutting-edge research, but also the more mundane hurdles 
that can block the translation of findings to the clinic. Those low-tech 
projects should continue to receive emphasis, even as project leaders 
grapple with financial reality.

When the moonshot’s advisory panel of cancer experts released its 
ten scientific recommendations in September, for example, it high-
lighted the expanded use of proven cancer-prevention techniques. 
In doing so, it drew welcome attention to these techniques and how 
improving their deployment could reduce deaths — from cervical 
cancer by 90%, from colorectal cancer by as much as 70% and from 
lung cancer by up to 95%. 

The tools are at our fingertips, if only society could muster the 
means to use them. Take smoking — it is still on the rise worldwide, 
despite its clear link to cancer. In 2015, about 30% of US cancer deaths 
were from lung cancer. By 2030, smoking is projected to kill 8 million 
people globally each year. Researchers need to learn more about the 
barriers that have held back efforts to reduce these numbers, and how 
best to implement strategies for stopping smoking.

Similarly, colorectal cancer could be reduced through wider use of 
recent advances in non-invasive screening methods. But not many 
physicians are aware of these techniques, and too few people who are 
at risk of the disease are targeted for early screening. 

Many cancers caused by human papillomavirus (HPV) are now 
preventable with a vaccine given to adolescents. However, uptake of 
the vaccine still falls below targets, in part because of parental concerns 
and misconceptions about the risks of vaccination.

“When budgets 
are constrained, 
it is important 
not to let the 
glitzy outshine 
the familiar.” 

Daunting data
The power of big data must be harnessed for 
medical progress. But how?

There is art in ‘big data’ — in the poetic claims that it competes in 
volume with all the stars in the firmament. And in the seductive 
potential of its exponential, uncontrolled, ungraspable growth 

to improve our lives: by allowing medical treatments to be developed 
and approved more quickly — and, ultimately, truly personal medicine. 

But at a workshop held in London by the European Medicines 
Agency earlier this month, just how much science has to happen to 
make this beautiful future a reality was apparent to all. Patient groups 
and research scientists attended, alongside computational heavyweights 
from IBM Watson Health and Google Cloud Platform. Together, they 
tackled chewy questions to which there are few answers.

How many data are ‘enough’ to reliably predict clinical effect? Which 
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P
revention of any disease can occur at 

two levels: (i) avoiding or reducing 

risk factors coupled with increases in 

protective factors (primary preven-

tion, which is preferable when it can 

be practiced) and (ii) detection and 

intervention early in the course of disease 

evolution (secondary prevention). But de-

spite substantial epidemiologic data show-

ing that a large proportion of cancers and 

cancer deaths are preventable, decreases in 

cancer mortality rates  in developed coun-

tries have lagged far behind decreases in 

mortality rates  from heart disease (1), an-

other major disease amenable to preven-

tion (for example, 18 versus 68% decrease, 

respectively, between 1969 and 2013 in the 

United States) (2). We believe that one main 

factor explaining the relatively modest re-

duction in mortality is the limited support 

for cancer prevention research, which re-

ceives only 2 to 9% of global cancer research 

funding (3). As a United Nations (UN) High-

Level Meeting begins this week to review ef-

forts to combat noncommunicable diseases, 

a key question is how to prioritize resources 

to realize the potential of cancer prevention. 

LATE VERSUS EARLY CANCERS

The great majority of cancer research is fo-

cused on curing late cancers that have al-

ready spread throughout the body by the 

time they are detected. The reasons for this 

heavily skewed focus are manifold. First, so-

cieties, in general, are reactive rather than 

proactive. Second, the final stages of treat-

ment research (and regulatory approval) 

can be simpler to perform than prevention 

research (requiring just hundreds of patients 

versus tens of thousands of patients). Third, 

it is much more dramatic to effectively treat 

a patient with advanced disease than to 

prevent disease. Thus many patients who 

are effectively treated donate large sums to 

cancer centers; there are few thanks given 

for preventing cancers. Fourth, there are 

few financial incentives for industry to sup-

port primary prevention measures based on 

avoidance of risk factors. And finally, the fi-

nancial incentives to develop new therapeu-

tics are far more lucrative than those for new 

diagnostic tests for early 

detection and prevention. 

Recent research has illu-

minated why it is so difficult 

to cure advanced cancers. 

Even the best new targeted 

therapies can generally only 

induce transient responses 

because hundreds to thou-

sands of cells that are re-

sistant to such therapies 

already exist within any 

advanced cancer (4). These 

preexisting resistant cells 

will eventually emerge, causing relapse. On 

the other hand, recent research has solidified 

the view that many cancers are entirely pre-

ventable through changes in environment or 

lifestyle. A cancer that is prevented is “cured,” 

not simply driven into a transient remission. 

Moreover, primary prevention eliminates the 

considerable morbidity associated with sur-

gery and adjuvant therapy. 

However, not all cancers are preventable 

by changes in environment or lifestyle. Re-

cent research (5, 6) has shown that mutations 

due to random mistakes during normal DNA 

replication (R) play a major role in cancer 

etiology, along with environment and life-

style (collectively denoted E ) and heredity 

(H). R can also explain extreme variation in 

cancer incidence across different tissues. R, 

calculated from the lifetime number of cell 

divisions in a tissue, is correlated with the 

lifetime risk of cancer in that tissue, indicat-

ing a role for R, independent of E, worldwide. 

This EHR model (see the figure) highlights 

the connection between  epidemiologic and 

molecular perspectives and informs cancer 

research and prevention strategies in two 

ways. First, explicit quantification of differ-

ent types of mutations in cancer reinforces 

the importance of prevention: Cancers can 

still be preventable as long as one of the mu-

tations driving toward cancer is caused by E. 

Second, the model highlights the heterogene-

ity of cancer arising in different tissues. For 

cancers in which most of their driver muta-

tions are caused by E—such as lung cancers, 

melanomas, and cervical cancers—about 85 

to 100% of incident cases could be eliminated 

through smoking cessation, avoidance of ul-

traviolet radiation exposures, and vaccination 

against human papillomavirus, respectively. 

For other cancer types that have a large 

proportion of R mutations—such as those 

of the pancreas, breast, and prostate—less 

than half of incident cases 

can be attributed to known 

environmental risk factors 

(7, 8). Variations in cancer 

rates among countries and 

studies of migrants indicate 

the existence of additional 

environmental factors that 

contribute to more of these 

cancers than are currently 

known. However, mutations 

that occur naturally regard-

less of the external environ-

ment undoubtedly play a 

role (6). Fortunately, many of these cancers 

will still be amenable to secondary preven-

tion, with morbidity and mortality from the 

disease minimized. 

CONNECTIONS AND MECHANISMS

More research is needed to strengthen the 

connection between epidemiology and mo-

lecular biology. It will be important to iden-

tify mechanisms through which diet, exercise, 

and other lifestyle factors that are unambigu-

ously associated with cancer lead to the dis-

ease (9). Can such factors be associated with 

genetic or epigenetic signatures that are of-

ten found in cancers, tying sequencing and 

epidemiology together? At present, most mo-

lecular signatures identified in genome-wide 

sequencing studies of cancer cannot be at-

tributed to any environmental factor.

A specific example might put these chal-

lenges in perspective. Obesity is appreciated 

to be a major risk factor for cancer. Although 

the mechanisms through which obesity in-

creases cancer risk remain to be fully under-

CANCER RESEARCH

Cancer prevention: Molecular 
and epidemiologic consensus
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Interception Research
üPrevention
üEarly Detection
üEarly Intervention 

Song, Science 361:1317, 2018

“Molecular basis for dietary 
chemoprevention”





Jones S et al. PNAS 2008;105:4283-4288©2008 by National Academy of Sciences

1. Time – evolution of CRC
2. Genetic Heterogeneity
3. Host/Microbe Interaction

Chemoprevention Challenges



Target the Early Prevention of Cancer



West, Nat Rev Immunol 15:615, 2015



Liu, Nature Immunol 18:1175, 2017



Rummel, Physiology 31:117, 2016

Obesity







Todoric, Cancer Prev Res, 9:895, 2016





Philip Castle, Ph.D., M.P.H., joined NCI in July 2020 as director of the Division of 
Cancer Prevention (DCP). To mark his first year as DCP director, Dr. Castle discusses 
DCP’s priority areas and his vision for making more rapid progress in cancer 
prevention.

• What do you see as the most promising possibilities for, and barriers to, real 
progress in cancer prevention over the next decade?

• There are a variety of areas of promise. One area that we’re working very
hard to develop is precision cancer prevention. What I mean by that is using
what we know about a person—their genetics, risk factors, lifestyle—to tailor
our prevention strategies. And as an anchor to that, we’re using molecular
sciences to flesh out the best approaches for advancing this work.

• At the same time, we want to democratize cancer prevention, developing
new strategies that make proven prevention measures more broadly
accessible, particularly for underserved populations. For instance, efforts
to expand the use of self-sampling with HPV DNA testing for cervical
cancer screening.

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045873&version=Patient&language=en
https://www.cancer.gov/news-events/nca50/stories/cervical-cancer-prevention


• As for barriers to progress, I see two major issues. One that has been called the
“prevention paradox”: If we’re successful with prevention, there’s nothing to observe
because we’ve avoided a bad outcome—cancer. It’s what I call an “event bias,”
where we tend to notice the events that occur rather than the absence of events.

• A second barrier is the benefits-to-harms ratio of any prevention-focused
interventions. When you’re talking about cancer prevention, you’re primarily dealing
with generally healthy people. So the tolerance for any side effects from a
prevention intervention is very low. Many people won’t get cancer in their lifetime,
and you don’t want to harm anybody who was never going to get cancer.

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000454757&version=Patient&language=en


“Interception” Research

üPrevention
üEarly Detection
üEarly Intervention 



• Prevention is a broad topic. Have you identified priority areas for the division?

• One is developing preventive agents. That involves identifying “druggable” 
targets for preventive drugs and developing the drugs themselves. That work is
anchored in molecular sciences, understanding cancer-promoting signaling
pathways in cells and how to interrupt them, and using that information to
develop new pharmacologic agents or repurpose existing drugs for use in cancer
prevention.

• The second research arc is discovering biomarkers that can identify who is at
increased risk of cancer. Eventually, those two areas will come together: We will
be able to use a biomarker that can identify who’s at risk, and then provide a
preventive agent to mitigate that risk, based on an individual’s underlying biology.

• Once we understand the biology and genetics of cancer-related and treatment-
related symptoms—that is, symptom science—we can better tailor the use of
current medications to prevent and/or alleviate symptoms and develop new, more
effective medications in the future.

• This has an important impact on survivorship: The longer we keep people with
cancer healthy, the more likely they are going to be able to get the next-in-line
therapy and even therapies that have not been invented today but will be
tomorrow.

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045618&version=Patient&language=en
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000445089&version=Patient&language=en


üHeterogeneity in response
üDietary bioactives and drugs are pleiotropic
üNeed to elucidate molecular mechanisms of action



Zeisel, Ann Rev Food Sci Technol 11:71, 2019

What Contributes to Individual Variability?

FO11CH04_Zeisel ARjats.cls February 28, 2020 15:0

Separate responders
from nonresponders

using biomarkers

High variance

Low variance

Low variance

Figure 1
Precision nutrition enables scientists to better understand why there are responders and nonresponders to
dietary interventions. Because of genetic, epigenetic, microbiota, and environmental differences, metabolic
heterogeneity can result in differences in how people (or animals) respond to nutrients or bioactive
molecules. When heterogeneous people are lumped together in studies of dietary interventions, large
interindividual variance makes it dif!cult to detect signi!cant effects. Large groups of people, usually of
similar ancestry, share common underlying causes of metabolic heterogeneity. Using appropriate biomarkers,
including genetic data, researchers can stratify people so that responders and nonresponders can be
predicted for an intervention, and the resulting data analyzed separately, thereby reducing interindividual
variability and enhancing the capacity to detect signi!cant differences between groups.

biology model approach has been recently discussed in detail (Bauer & Thiele 2018, van Ommen
et al. 2017). Methods for measuring all these inputs are not at the same stage of sophistication;
therefore, inputs that can be easily measured tend to be prominent components of the !rst mathe-
matical models developed for use in precision nutrition.Whereas scientists were recently report-
ing the effects of individual gene variants, they are now modeling the effects of complex patterns
of gene variants and adding changes in microbial composition and microbial gene expression to
these models (Bashiardes et al. 2018).

This review focuses mainly on genetically related sources of heterogeneity and identi!es chal-
lenges that need to be overcome to achieve a full understanding of the complex interactions be-
tween the many sources of metabolic heterogeneity that make people differ from one another in
their requirements for and responses to foods.

GENETIC VARIATION AS A SOURCE OF NUTRITION-RELEVANT
METABOLIC HETEROGENEITY
Metabolic heterogeneity can derive from variants in genes that code for mRNA that is then trans-
lated into proteins as well as from variants in noncoding regions of genes. People have more than
!ve million variations in their genetic code [any individual person has at least 50,000 of these sin-
gle nucleotide polymorphisms (SNPs)] (Overbeek et al. 2005, Sabeti et al. 2007); they also have
gene copy number variations (Reiter et al. 2016, Sharma et al. 2016) and tandem repeat (stretches
of DNA that are highly variable in length) variations (Bilgin Sonay et al. 2015). These gene vari-
ants are inherited from ancient ancestors and therefore differ among people depending on their
heritage (Overbeek et al. 2005, Sabeti et al. 2007). Animals have similar genetic variation (Kiddy
1979). These gene variants can perturb the expression and function of enzymes, transporters, or
receptors and their ligands by changing the expression of the gene or the rate of translation of
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Ahima, Science 341:856, 2013

Does One Approach Fit All?



Schroeder, Nature Medicine 22:1079, 2016

Gut microbiota is associated with many chronic diseases in humans

What Contributes to Heterogeneity in Response?
Gut Microbiome

Food genome



Koppel, Science 356:1246, 2017

the organisms and genes in this community to
elucidating the mechanisms underlying their
influence onhost health. By altering the chemical
structures of ingested compounds, gut microbes
can mediate the effects of diet, pollutants, and
drugs on host physiology. Individual variation
remains a major challenge, and although many
such metabolic activities have been identified,
few have been connected to organisms, genes,
and enzymes. Moving forward, it is essential that
we incorporate enzyme discovery and character-
ization efforts into investigations of gut micro-
bial xenobiotic metabolism. Only by gaining a
molecular understanding of these processes can
we leverage the remarkable chemical abilities of
this community to improve human health.
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Fig. 4. Potential implications of understanding gut microbial xenobiotic metabolism. (A) Interfacing clinical studies and hypothesis-driven research
in model systems is essential for elucidating the biological consequences of gut microbial xenobiotic metabolism. Incorporating a mechanistic
understanding of microbial transformations, along with knowledge of host genetics and metabolism, could (B) inform personalized nutrition, (C) improve
toxicological risk assessment, and (D) enable personalized medicine.
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the organisms and genes in this community to
elucidating the mechanisms underlying their
influence onhost health. By altering the chemical
structures of ingested compounds, gut microbes
can mediate the effects of diet, pollutants, and
drugs on host physiology. Individual variation
remains a major challenge, and although many
such metabolic activities have been identified,
few have been connected to organisms, genes,
and enzymes. Moving forward, it is essential that
we incorporate enzyme discovery and character-
ization efforts into investigations of gut micro-
bial xenobiotic metabolism. Only by gaining a
molecular understanding of these processes can
we leverage the remarkable chemical abilities of
this community to improve human health.
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Tumour cell heterogeneity maintained by cooperating
subclones in Wnt-driven mammary cancers
Allison S. Cleary1,2, Travis L. Leonard1,2, Shelley A. Gestl1,2 & Edward J. Gunther1,2,3

Cancer genome sequencing studies indicate that a single breast can-
cer typically harbours multiple genetically distinct subclones1–4. As
carcinogenesis involves a breakdown in the cell–cell cooperation that
normally maintains epithelial tissue architecture, individual subclones
within a malignant microenvironment are commonly depicted as self-
interested competitors5,6. Alternatively, breast cancer subclones might
interact cooperatively to gain a selective growth advantage in some
cases. Although interclonal cooperation has been shown to drive
tumorigenesis in fruitfly models7,8, definitive evidence for functional
cooperation between epithelial tumour cell subclones in mammals
is lacking. Here we use mouse models of breast cancer to show that
interclonal cooperation can be essential for tumour maintenance.
Aberrant expression of the secreted signalling molecule Wnt1 gen-
erates mixed-lineage mammary tumours composed of basal and lumi-
nal tumour cell subtypes, which purportedly derive from a bipotent
malignant progenitor cell residing atop a tumour cell hierarchy9.
Using somatic Hras mutations as clonal markers, we show that some
Wnt tumours indeed conform to a hierarchical configuration, but
that others unexpectedly harbour genetically distinct basal Hras mutant
and luminal Hras wild-type subclones. Both subclones are required
for efficient tumour propagation, which strictly depends on lumin-
ally produced Wnt1. When biclonal tumours were challenged with
Wnt withdrawal to simulate targeted therapy, analysis of tumour
regression and relapse revealed that basal subclones recruit hetero-
logous Wnt-producing cells to restore tumour growth. Alternatively,
in the absence of a substitute Wnt source, the original subclones often
evolve to rescue Wnt pathway activation and drive relapse, either by
restoring cooperation or by switching to a defector strategy. Uncov-
ering similar modes of interclonal cooperation in human cancers
may inform efforts aimed at eradicating tumour cell communities.

Cancer progression is known to depend on cooperation between
tumour cells and neighbouring host cells in the microenvironment. Some
have suggested that cooperation between distinct tumour cell subsets may
also contribute to the malignant phenotype10–12. Favouring this pos-
sibility, genetically distinct subclones cooperatively enhanced tumour
growth in models engineered to recapitulate a form of tumour cell het-
erogeneity identified in brain cancers13. Similarly, phenotypically dis-
tinct tumour cell subsets cooperatively enhanced tumour invasion in a
murine lung cancer model14. In the case of human breast cancer, recent
studies highlight the phenotypic and genetic diversity present locally
within individual tumours15,16, but whether this heterogeneity is a cause
or a consequence of tumour progression remains unclear. Accordingly,
we sought definitive evidence for functional cooperation between tumour
cell subsets in mouse models of human breast cancer.

Mammary cancers arising in the classic mouse mammary tumour virus
(MMTV)-Wnt1 transgenic mouse model17 display tumour cell hetero-
geneity that is widely attributed to malignant transformation of a bipo-
tent mammary progenitor cell9,18,19. Concordantly, MMTV-Wnt1 tumour
cells partition into basal and luminal subsets which comingle, recalling
the corresponding basal and luminal lineages found in the normal

mammary gland (Fig. 1a, b). Although mutations in Wnt pathway com-
ponents are rare in human breast cancers, the transcriptional profile
of Wnt1-initiated tumours resembles that of other mammary cancer
models that commonly show mixed-lineage histopathology, including
chemical carcinogen-induced rodent mammary cancers20,21.

While studying cooperating oncogenic mutations in the MMTV-
Wnt1 model, we found evidence suggesting that some Wnt tumours
harbour unexpected genetic heterogeneity. About half of all Wnt-initiated
mammary tumours spontaneously acquire somatic Hras mutations that
encode an activated oncoprotein22,23. Because Hras mutations act dom-
inantly, Hras mutant allele fractions (MAFs) of approximately 0.5 are
expected, barring copy number changes at the Hras locus. Instead, when
tumour-derived Hras alleles were amplified by PCR and subjected to
DNA sequencing, chromatogram peak heights often indicated smaller
Hras MAFs, with fractions ,0.3 detected in four out of ten tumours.
Notably, tumours maintained their small Hras MAFs as a stable prop-
erty when explanted onto the flanks of syngeneic host mice (Fig. 1c).
This discrepancy could not be explained by contamination of samples
with normal (non-tumour) cells as tumour cell content assessed by his-
topathology consistently exceeded 80%. Moreover, copy number varia-
tions leading to either Hras wild-type (Hraswt) allele gain or Hras mutant
(Hrasmut) allele loss seemed unlikely driver events. Instead, we consid-
ered whether some Wnt tumours might harbour distinct Hrasmut and
Hraswt subclones, noting that biclonal tumours would adopt a mixed-
lineage phenotype provided each subclone were committed to a dis-
tinct lineage.

To search for lineage-restricted Hrasmut and Hraswt subclones, dis-
sociated cells prepared from Hrasmut Wnt tumours were sorted into
basal and luminal subsets (Extended Data Fig. 1), then Hras MAFs were
determined for each subset and for corresponding samples of unsorted
cells. Half of the Hrasmut Wnt tumours analysed (five out of ten) showed
negligible subset-specific enrichment in Hrasmut alleles, a pattern con-
sistent with a hierarchical configuration (Fig. 1d, e). In these cases, basal
and luminal cells from the same tumour always harboured identical
Hrasmut alleles (Fig. 1e), suggesting that they descended from a com-
mon bipotent Hrasmut progenitor. By contrast, for the remaining half
of tumours analysed, Hrasmut alleles were highly enriched within the
basal tumour cell subset, a pattern consistent with a biclonal configu-
ration (Fig. 1e). Basal Hrasmut allele enrichment correlated with a lower
overall Hras MAF, further suggesting the presence of a private, subclone-
restricted mutation. Regardless of whether the distribution of Hrasmut

alleles fits a hierarchical or biclonal pattern, tumours showed classic
mixed-lineage histopathology (Extended Data Fig. 2), and luminal tumour
cells were invariably the main source of Wnt1 expression as reported
previously24 (Fig. 1f). Therefore, some Wnt tumours appeared to harbour
distinct basal Hrasmut Wnt1low and luminal Hraswt Wnt1high subclones,
implicating interclonal cooperation in tumour maintenance. These find-
ings recall early reports in which MMTV-associated mammary tumours
initiated by activation of endogenous Wnt genes were sometimes noted
to be oligoclonal25,26.

1Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA. 2Penn State Hershey Cancer Institute, Pennsylvania State University
College of Medicine, Hershey, Hershey, Pennsylvania 17033, USA. 3Department of Medicine (Hematology/Oncology), Pennsylvania State University College of Medicine, Hershey, Hershey, Pennsylvania
17033, USA.

3 A P R I L 2 0 1 4 | V O L 5 0 8 | N A T U R E | 1 1 3

Macmillan Publishers Limited. All rights reserved©2014

Nature 508:113, 2014

5-FU plus oxaliplatin therapy, have provided a first clue. 
Retrospective classification of patients enrolled in this 
trial using the Oncotype DX tool demonstrated a simi-
lar benefit of oxaliplatin-based therapy for different risk 
categories, suggesting an increased absolute benefit of 
this agent in patients identified as high-risk by Oncotype 
DX–based stratification72. However, these data do not 
exclude a possible benefit from adjuvant treatment for 
patients identified as low-risk. The predictive value of 
these tools needs further investigation, and a prospec-
tive study using paraffin-embedded tissue samples and 
 stratification using ColoPrint is currently ongoing73.

Notwithstanding the potential clinical utility of these 
gene-expression arrays for detecting patients at high risk 
of recurrence, this approach provides little biological 
insight into the disease. Moreover, this approach does 
not enable the identification of novel and rational targets 
for therapy in patient subgroups. To circumvent these 
shortcomings, several groups have used a radically dif-
ferent strategy to identify molecular CRC subtypes using 
an unbiased approach — that is, independent of clinical 
features of the disease10,74–79. These studies have resulted 
in a series of classifications that, for example, can detect 
a canonical colon cancer with an epithelial expression 
profile and a relatively good prognosis, a mesenchymal 
colon cancer subtype associated with a poor disease out-
come, and a subtype that is strongly associated with MSI 
cancers and a favourable disease outcome80. Intriguingly, 
none of these subtypes can be recognized based on a 
specific genetic event, signifying that the genetic back-
ground of a cancer is only partially responsible for its 
gene-expression profile and clinical behaviour, and that 
the developmental route to progression and the tumour 
microenvironment are equally critical. An integration 
of these transcriptome-based disease classifications has 
now enabled the definition of four consensus molecu-
lar subtypes (CMS1–4)81 (TABLE 2). CMS1 represents a 
subgroup of cancers with a good prognosis and a strong 
association with MSI tumours. CMS2 comprises  cancers 
with an epithelial-cell-like gene-expression profile and a 
high degree of chromosomal instability. CMS3  cancers 
display marked metabolic deregulation, while CMS4 

cancers display mesenchymal features, extensive stro-
mal invasion and hold a poor prognosis. Given the 
extensive biological differences between these sub-
types, responsiveness to therapies is also likely to dif-
fer for each subtype. Indeed, metastatic tumours of the 
mesenchymal subtype display resistance to anti-EGFR 
monotherapy independent of RAS-mutation status10,82. 
Similar evidence indicates that patients with mesen-
chymal colon cancers (stage II/III) do not benefit from 
adjuvant chemotherapy79. Of note, these insights are 
all derived from retrospective analyses, with associated 
short comings, and thus dedicated prospective studies are 
needed to establish the relevance of the CMS for guiding 
treatment decisions. We advocate the use of the CMS in 
the prospective evaluation of novel treatment modalities 
in order to increase the likelihood of identifying novel 
active compounds and to ensure that new treatments 
can be readily introduced in patient groups that will 
benefit most.

Metastatic disease and heterogeneity
Prognostic implications and biomarkers. Similar to 
early stage disease, both clinical and molecular data 
have shown that patients with metastatic CRC have a 
heterogeneous prognosis and response to treatment. Few 
predictive biomarkers are available, resulting in the use 
of a ‘one-size-fits-all’ approach, whereby many patients 
are unnecessarily exposed to the toxic effects of  (often 
very expensive) treatments. In addition to ‘classic’ clini-
cal prognostic factors, such as performance status, extent 
of disease, and serum LDH levels, BMI has been shown 
to have prognostic value83; if confirmed, further research 
is warranted to explain the biological mechanism behind 
the relationship between BMI and prognosis. The resec-
tion status (yes versus no) of the primary tumour has 
also been identified as a potential prognostic factor in 
patients with synchronous metastases84, which is cur-
rently being assessed in prospective clinical trials85–87. 
In addition to known predictive value for the efficacy of 
treatment with anti-EGFR antibodies, KRAS-mutation 
status might also have prognostic value88. Data indicate 
that anatomical site (proximal versus distal from the 
splenic flexure) might be another important prognos-
tic parameter, independent of mucinous histology and 
BRAF-mutation status48, but further research is needed 
to clarify this relationship.

Influence on response to chemotherapy. In general, 
systemic chemotherapy is the treatment modality that 
provides the greatest benefit to patients with metastatic 
disease. Despite intensive research on predictive bio-
markers of responsiveness to chemotherapy, no clinically 
useful markers have been identified89. Similarly, currently 
no predictive markers are available to guide bevacizumab 
therapy90. In the ongoing MAVERICC trial91, previously 
untreated patients with mCRC are being randomly 
assigned to receive either FOLFOX6 (a regimen com-
prising 5-FU, folinic acid, and oxaliplatin), or FOLFIRI 
(5-FU, folinic acid, and irinotecan); bevacizumab is being 
added to each treatment arm and serum VEGF-A levels 
are being determined. The results of these analyses of 

Table 2 | Transcriptional identified consensus molecular subtypes (CMS)

Tumour 
subtype

CMS1 
MSI/immune

CMS2 
canonical

CMS3 
metabolic

CMS4 
mesenchymal

Proportion* ~15% ~40% ~10% ~25%

Genomic 
features

Hypermutated SCNA high Mixed MSI SCNA high

Genetic drivers BRAF APC KRAS Unknown

Associated 
precursors

Serrated Tubular Unknown Serrated

Gene-expression 
signature

Immune Wnt/MYC 
activity

Metabolic 
deregulation

• TGFβ / EMT
• High stromal 

content

Prognosis Intermediate Good Intermediate Poor

EMT, epithelial–mesenchymal transition; MSI, microsatellite instability; SCNA, somatic 
copy-number alterations.*Approximately 10% of cases are not reliably classified into one 
tumour subtype. Adapted with permission from Guinney J. GV|CN� The consensus molecular 
subtypes of colorectal cancer. 0CV��/GF� 21, 1350–1356 (2015).
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Depiction of subclonal evolution and 
diversification of cell types in developing 
malignant populations
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algorithms had superior predictive value than algorithms distin-
guishing benign and pathogenic mutations (Figure S5). The
CTAT cancer score outperformed all individual sequence-based
approaches.

Overall, 9,919 predicted cancer driver mutations in our cohort
(3,437 uniquemutations) were identified byR2 approaches from
CTAT population, CTAT cancer, or structural clustering. These
mutations affect 5,782 tumor samples. These missense driver
mutations represent a greater fraction of the total mutations in
oncogenes than in tumor suppressors (Figure 3B). In this latter

group, most mutations seem to be truncations or frameshifts,
consistent with previous observations (Vogelstein and Kinzler,
2004). Nevertheless, some tumor suppressor genes also have
high numbers of missense driver mutations, such as EP300,
CREBBP, CASP8, PIK3R1, and TP53 (Figure 3B). An interesting
example is CDH1, which is primarily affected by truncating or
frameshift mutations in BRCA (75 out of 85 mutations), but
mostly targeted by missense driver mutations in STAD (21 out
of 25 mutations). This suggests differing roles for CDH1 in these
two cancer types.
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Figure 3. Driver Mutation Discovery Approaches, Overview, Overlap, and Contrasts
(A) Venn diagram indicates the total number of mutations overlapping among three consensus approaches: CTAT population, CTAT cancer, and structural

clustering. Adjacent bar chart indicates the top 20 genes sorted by three-set intersecting mutation counts.

(B) Driver gene discovery identified gene-tissue pairs (canonical genes) in tumor suppressors and oncogenes. However, some gene-tissue pairs were not

identified in driver discovery (non-canonical). Mutation frequency from canonical and non-canonical cancer genes are displayed and divided among four mu-

tation classes: truncation/frameshift mutations (gray); missensemutations uniquely identified by only one approach (yellow, see A); missensemutations identified

by multiple approaches (red, see A); and missense passenger mutations not identified by any approach (off-white).

(C) Mutation percentage out of all missense and truncating/frameshift mutations within a gene is shown on the y axis (log scale). Point size is log scaled and

represents amino acid position frequency. The top 23 genes ordered by increasing mutational diversity (normalized entropy) and only the 9 most frequently

mutated amino acid positions for each gene are shown.

See also Figure S5 and Table S4.
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Over the past 30 years, cancer research has 
been dominated by a paradigm centred on 
the discovery of genes altered by somatic 
mutations (so-called cancer genes1,2), 
their functional characterization3,4 and the 
targeting of their biochemical activities 
for therapeutic purposes5,6. More recently, 
this paradigm has been amplified by our 
evolving capacity to both comprehensively 
characterize cancer mutations7 and to 
develop ingenious ways to target essential 
cancer genes and/or the pathways they 
control8. To date, a multitude of targeted 
therapeutics have been approved to treat 
a variety of tumours, and many more 
therapeutics are in development or early 
clinical testing.

Unfortunately, a common theme of 
therapeutic relapse and resistance has 
emerged in the wake of the widespread 
adoption of targeted therapies9,10. While 
the breadth and rapidity with which 
relapse and resistance have been observed 
may have surprised cancer biologists and 
clinicians, their emergence is certainly 
not a surprise. By definition, cancer is a 
disease of somatic mutations that select for 

computational inference of subclonality17–19. 
However, deep bulk sequencing alone 
is insufficient to enable full exploration 
of cancer genomic and transcriptomic 
heterogeneity owing to both practical and 
technical limitations (BOX 1).

The single cell is the fundamental 
substrate upon which mutational 
mechanisms20,21 and the principles of 
selection act to evolve the complex structure 
that is a tumour mass. Thus, understanding 
single cancer cells at their individual level and 
as an ensemble — an interacting, dynamic 
system (the cancer microenvironment) — is 
bound to advance our understanding of 
not only therapeutic resistance but all facets 
of tumour biology. While cancer scientists 
have long sought to study and analyse single 
cancer cells12,22, the means and tools at their 
disposal have been limiting factors. In this 
Opinion article, we argue that the rapidly 
emerging single-cell sequencing technologies, 
with their capacity to characterize the 
genome, transcriptome and epigenome of 
single cells, will have a profound impact 
on our understanding of tumour biology 
and genetics, from the very early phases of 
tumour development to late-stage metastatic 
disease. Furthermore, the application of 
single-cell sequencing in the clinic has the 
potential to fundamentally change our 
approach to cancer management. Much 
information has already been gleaned by 
use of these technologies, and while many 
challenges remain, we posit that the potential 
of single-cell sequencing will continue 
to fuel the engines of innovation, bring 
about solutions to present problems and 
fundamentally enhance our knowledge of 
this disease.

State of the art and limitations
The field has witnessed rapid development 
since the initial proof-of-concept studies 
demonstrating the ability to carry out 
single-cell transcriptome23 and single-cell 
genome sequencing24. The engine behind 
these developments has primarily been 
the molecular biology and chemistries 
fuelling a diversity of approaches to 
capture and amplify single-cell nucleic 
acids (whole-genome amplification 
(WGA) for DNA and whole-transcriptome 
amplification (WTA) for RNA)25,26. What 

a proliferative, invasive phenotype. Implicit 
in this definition is the notion that along the 
evolutionary trajectory of a cancer, different 
genetically heterogeneous populations of 
single cancer cells are likely to evolve and 
dynamically interact with one another11–13. 
This underlying intra-tumoural genetic 
heterogeneity thus provides a substrate 
for the selection of resistance to targeted 
therapies. Although we are gaining some 
knowledge of the genetic heterogeneity 
and the evolutionary principles governing 
resistance, we are still woefully lacking in 
the molecular details and parameters that 
govern these phenomena in cancer14–16. 
Improving our understanding of these 
parameters is thus essential to combating 
therapeutic resistance and to the 
development of more effective drugs or, 
more likely, drug combinations. Indeed, 
the advent of next-generation sequencing 
(NGS) technologies has enabled thorough, 
elegant investigations into intra-tumoural 
genetic heterogeneity via deep sequencing 
(whole genome, targeted exome or 
transcriptome) of bulk DNA and RNA 
retrieved from cancer tissue and the 

O P I N I O N

Unravelling biology and shifting 
paradigms in cancer with single-cell 
sequencing
Timour Baslan and James Hicks

Abstract | The fundamental operative unit of a cancer is the genetically and 
epigenetically innovative single cell. Whether proliferating or quiescent, in the 
primary tumour mass or disseminated elsewhere, single cells govern the parameters 
that dictate all facets of the biology of cancer. Thus, single-cell analyses provide the 
ultimate level of resolution in our quest for a fundamental understanding of this 
disease. Historically, this quest has been hampered by technological shortcomings. 
In this Opinion article, we argue that the rapidly evolving field of single-cell 
sequencing has unshackled the cancer research community of these shortcomings. 
From furthering an elemental understanding of intra-tumoural genetic 
heterogeneity and cancer genome evolution to illuminating the governing 
principles of disease relapse and metastasis, we posit that single-cell sequencing 
promises to unravel the biology of all facets of this disease.
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the most promising solution involves the 
very recent use of bacterial transposons and 
in vitro transcription (IVT) for WGA76. This 
innovative coupling of transposition with 
IVT has enabled increased genome coverage, 
linear amplification of DNA sequences 
and single-molecule DNA counting, all of 
which greatly enhance the ability to detect 
SNVs on a genome- or exome-wide scale. 
In addition, separate studies have reported 
the utilization of transposition in scaling 
of single-cell genome library preparation 
and sequencing77,78.

On the RNA side, ascribing the observed 
variation in single-cell data to technical or 
biological variation has presented a major 
challenge because of the sparseness of 
the data, sampling biases and dropouts in 
gene expression for low-level transcripts, 
among other challenges. These problems 
have largely stemmed from the relative 
inefficiency of mRNA capture in single-cell 
transcriptome methods, for which capture 
efficiency ranges anywhere from 5 to 
15%. Analysis of this variation has been 
aided tremendously by the development 
and application of computational tools to 
derive noise models for data correction, as 
well as the application of machine learning 
algorithms for the inference and imputation 
of gene expression signals for normalization 
and discovery purposes79,80. In addition, 
given the dynamic nature of the cellular 
transcriptome (in contrast to the relatively 
static nature of the genome), the degree 
of equivalence between gene expression 
patterns from isolated single cells (obtained 
via processing and isolation techniques) 
and those of cells in their native, in vivo 
environments has been questioned81. To 
address this issue, numerous studies have 
experimented with ‘fixing’ the transcriptional 
state of cells before isolation and processing 
using either aldehyde or alcohol fixation 
conditions, with encouraging results82,83.

Lastly, with the sufficient maturation 
of molecular WGA and WTA methods 
and the realization that the true power of 
single-cell sequencing in dissecting genome 
and transcriptome heterogeneity lies in 
analysing large numbers of single cells, 
emphasis has shifted towards methods 
that facilitate the analysis of thousands of 
single cells. This is particularly true for 
RNA sequencing (RNA-seq)84,85 and copy 
number profiling86, where sparse, multiplex 
sequencing has been shown to yield 
quantitative information from large numbers 
of single cells. With the current sequencing 
output of Illumina machines, multiplexing 
hundreds of single-cell genomes and 

the cells of origin) is an important goal in 
cancer biology and is an area of intense 
investigation87,88. Prior knowledge of the 
subpopulations or cell types that constitute 
the normal tissue is required to begin 
addressing this question. Decades of elegant 
studies using mouse genetics coupled with 
experimental approaches, such as lineage 
tracing, have provided a comprehensive 
picture of the cellular hierarchies that exist 
within, for example, the haematopoietic 
and intestinal lineages. Knowledge of 
these hierarchies has been instrumental 
to understanding the molecular states 
and cell types conducive to molecular 
transformation, such as haematopoietic 
stem cells (HSCs)89 and leucine-rich 
repeat-containing G-protein coupled 
receptor 5 (LGR5)+ stem cells90 in the 
blood and intestinal lineages, respectively. 
This knowledge has also been helpful 
clinically, for example, in the World Health 
Organization (WHO) clinical classification 
of haematological neoplasms91,92. Thus, 
knowledge of the cellular hierarchies 
present in normal tissue is instrumental for 
a comprehensive understanding of cancer 
biology93. Could single-cell RNA-seq enable 
similar decomposition of tissue hierarchies 
to further the study of cancer biology? The 
answer is yes. Recently developed massively 
parallel single-cell RNA-seq technologies 
allow the retrieval of the transcriptional 
states of hundreds of single cells in a single 
experiment, enabling unbiased, de novo 
identification of cell types that constitute 
normal tissue and the delineation of their 
transcriptional markers85,94–97. Indeed, 
many reports have illustrated the utility of 
these technologies, which have led to the 
identification of cellular subpopulations 

transcriptomes is routine. Undoubtedly, with 
the ever-increasing output and decreasing 
cost of sequencing, multiplex analysis of 
thousands of single cells is likely to become 
routine as well. However, scaling from 
hundreds to thousands of single cells is 
associated with considerable challenges, 
specifically in terms of sequence library 
generation. This is where microfluidics 
are — and will continue — having an 
integral role, with recent studies providing 
encouraging results (BOX 3).

Thus, with sufficiently robust WGA and 
WTA methods, sequencing machines with 
outputs that facilitate massive multiplexing, 
microfluidics to enable the capture and 
preparation of a large number of single-cell 
sequencing libraries and informatics 
solutions to handle the data, the time is ripe 
to fully explore the ways in which single-cell 
sequencing can further our understanding of 
cancer genetics and biology in the laboratory 
and the clinic.

Advancing cancer biology and genetics
Broadly speaking, single-cell sequencing 
approaches have the potential to further our 
understanding of cancer in two ways: via 
the decomposition of heterogeneous cellular 
populations, both transcriptionally and 
genomically, and via the analysis of rare cells 
associated with the tumorigenic process 
(FIG. 1). These general themes are applicable 
during all stages of tumour development, 
from early pre-cancerous lesions to 
primary tumours and their eventual 
metastasis (FIG. 2).

Cell of origin. Identification of the cellular 
subpopulation (or subpopulations) that have 
the capacity to give rise to cancer (that is, 

Table 1 | Overview of the most commonly used single-cell sequencing technologies

Single-cell genomics Single-cell transcriptomics

Chemistry DOP-PCR24,31,86 MDA30,164,192 Full-length 
cDNA27,98

Transcriptome 
tagging28,29

Advantages* Uniformity of 
coverage

High genome 
coverage

Coverage across 
entire transcript

mRNA molecule 
tagging and 
counting; amenable 
to high multiplexing

Disadvantages* Low genome 
coverage

Non-uniform 
amplification 
of genome

Not yet compatible 
with highly parallel 
multiplexing

Does not provide 
coverage of entire 
transcript

Application CNA analysis SNV analysis In-depth analysis 
of single-cell 
transcriptome

Highly quantitative 
analysis of transcript 
abundance across 
many cells

CNA, copy number alteration; DOP-PCR, degenerate oligonucleotide priming-PCR; MDA, 
multi-displacement amplification; SNV, single nucleotide variant. *Advantages and disadvantages of the 
methods are based on empirical, comparative studies between whole-genome amplification (WGA) and 
whole-transcriptome amplification (WTA) methods carried out by multiple independent groups208–213.
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Single Cell Multi-omics



REVIEW SUMMARY

Single-Cell Metabolomics: Analytical 
and Biological Perspectives
R. Zenobi

Background: In recent years, there has been a surge in the development and application of single-
cell genomics, transcriptomics, proteomics, and metabolomics. The metabolome is defi ned as the 
full complement of small-molecule metabolites found in a specifi c cell, organ, or organism. The 
most interesting potential application of single-cell metabolomics may be in the area of cancer—for 
example, identifi cation of circulating cancer cells that lead to metastasis. Other fi elds where single-
cell metabolomics is expected to have an impact are systems biology, stem cell research, aging, and 
the development of drug resistance; more generally, it could be used to discover cells’ chemical 
strategies for coping with chemical or environmental stress. Relative to other single-cell “-omics” 
measurements, metabolomics provides a more immediate and dynamic picture of the functionality 
(i.e., of the phenotype) of a cell, but is arguably also the most diffi cult to measure. This is because 
the metabolome can dynamically react to the environment on a very short time scale (seconds or 
less), because of the large structural diversity and huge dynamic range of metabolites, because it is 
not possible to amplify metabolites, and because tagging them with fl uorescent labels would distort 
their normal function.

Advances: Although deep biological insight based on single-cell metabolomics has not yet been 
obtained, important steps have been taken toward this goal. Advances in mass spectrometry (MS), MS 
imaging, capillary electrophoresis, optical spectroscopy, and in the development of fl uorescence bio-
sensors now allow the simultaneous determination of hundreds of metabolites in a single cell, with sen-
sitivities in the attomole range. Modern array formats, in particular microfl uidic platforms, contribute to 
our ability to perform such measurements rapidly and with high throughput. Several recent studies show 
how novel biological insight can be extracted from single-cell metabolomics. Substantial differences 
in the metabolomes of different snail neurons—for example, in B1 and B2 type neurons—have been 
found, immediately after isolating them and after overnight culturing. Glycosphingolipids could be 
labeled with a fl uorescent tag, and in lysates of neurons incubated with such conjugates, all metabolic 
products derived from them were fl uorescent and could be identifi ed. Phosphorylation of 3´-deoxy-
3´-fl uorothymidine in lymphoma cells and solid tumors could be followed after treatment with cancer 
drugs. The biological effect of treating yeast cells by 2-deoxy-D-glucose (2DG) on the metabolome 
could be followed. The fact that single-cell measurements exhibited a much larger spread in metabolite 
concentrations than population measurements was exploited to determine many metabolite-metabolite 
correlations, which were altered in 2DG-treated yeast cells relative to con-
trols.

Outlook: The metabolome is an excellent indicator of phenotypic hetero-
geneity and has been recognized as a key factor in rare-cell survival when 
populations are subjected to major chemical or environmental challenges. 
Metabolomics at the single-cell level, however, is only just coming of age. 
Improvements leading to more complete coverage of the metabolome, better 
and faster identifi cation of metabolites, and nondestructive measurement 
are anticipated.
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individual cell directly; others involve cell culture,
for example, in a microfluidic device. A major is-
sue, as explained above, is a suitable sample prep-
aration that does not upset the metabolism of the
cells to be investigated. One way to cope with
this problem is to keep the cells in a native en-
vironment as long as possible. A number of high-
ly successful microfluidic chips that gently trap
cells have been presented in the literature (24–27).
Key functions of these microfluidic platforms are
to isolate cells, culture them under well-controlled
conditions, inject highly defined amounts of chem-
icals into the growth medium, and selectively
release cells for analysis, which may involve an
on-chip lysis step (28). Another option is to shock-
freeze cells before subjecting them to measure-
ment (23) to quench the metabolism.

Another issue is the required sensitivity. Cell
sizes vary widely. Typical mammalian cells have
diameters around 10 mm (volume = 1 pl); the
giant neurons of the sea slug Aplysia californica,
which have frequently been used in early single-
cell studies because they can bemanipulated man-
ually under a microscope, can reach 500 mm.
On the other end of the size spectrum are model
organisms such as yeast (diameter ≈ 5 mm) and
bacteria with diameters on the order of 1 mm (vol-
ume = 1 fl). Assuming ametabolite concentration
of 1 mM, the absolute amounts that need to be
detected in these tiny volumes are thus in the
range of 1 amol to 1 fmol, which is challenging,
even for major metabolites. Interestingly, the con-
centration sensitivity is less of an issue: The pres-
ence of a single molecule inside a 6-fl bacterial
cell translates into a concentration of 0.28 nM;
that is, it will generally not be necessary to mea-
sure concentrations lower than nanomolar.

Furthermore, cells are usually grown in me-
dium rich with molecules that are similar or even
identical to metabolites. Thus, it is critical to dif-
ferentiate between themetabolites in the surround-
ing medium (footprinting) and the metabolites
within the cell (fingerprinting).

Finally, high-throughput formats for sampling
cells are clearly necessary; an isolated measure-
ment on one single cell may be less meaningful
in a biological context (although if a single cell
could be precisely and continuously analyzed in
its morphological and molecular aspects, biolog-
ical insight could be obtained from that single cell).
To generate statistically significant data, hundreds
or thousands of measurements are generally nec-
essary, which presents another challenge. A num-
ber of strategies that enable high-throughput
interrogation of many single cells have been de-
veloped. Classical high-throughput formats are
flow cytometry and modifications thereof, such
as fluorescence-activated cell sorting (FACS;
Fig. 2A). Flow cytometry measurements are, how-
ever, generally not at all linked to metabolites and
may be used to separate a cell culture into two
or several subpopulations that are subsequently
analyzed. Special formats of cytometric measure-

ments have thus been developed—for example, a
mass spectrometric readout following flow cyto-
metric sample delivery (29). Other high-throughput
formats include microarray printing of controlled
numbers of cells (30) and many different lab-on-
a-chip devices (31). One such platform developed
byDi Carlo and Lee that allows gentle trapping is
shown in Fig. 2B (24). Many U-shaped hydro-
dynamic trapping structures allow both arrayed
culture of individual adherent cells and simulta-
neous control of fluid perfusion with uniform en-
vironments for individual cells. Cell loading can
be achieved in less than 30 s.

High-density chips are also becoming avail-
able to allowmeasurements by mass spectrometry
(MS). As described below, MS is one of the most
successfulmethods for single-cell metabolomics—
which, however, means that high-throughput prep-
aration of single-cell samples becomes the bottle-
neck. One possible solution involves MAMS
(microarray for mass spectrometry) chips (32),
as shown in Fig. 2C. A very attractive feature of
MAMS chips is that the hydrophilic wells sur-

rounded by an “omniphobic” polysilazane coat-
ing on the surface allow automated isolation of
small volumes containing single cells from cell
suspensions, by simply dragging the liquid over
the surface of the chip. Current versions of such
MAMS chips allow 10,000 to 50,000 wells to be
filled and subsequently analyzed; the number of
cells per well is given by a Poisson distribution.

Preparing Single-Cell Samples for Analysis

Microfluidics
Although microfluidics is not an analysis method
per se, microfluidic devices are extremely useful
in presenting single-cell samples for readout by
optical spectroscopy, mass spectrometry, or other
means. The job of the microfluidic device is to
transport, immobilize, culture, infusewith reagents,
hold for observation, and retrieve single cells in a
high-throughput fashion. Formats include patch-
clamp array (33), dynamic single-cell culture ar-
ray (24), and integrated microfluidic array plate
(iMAP) (34), in all cases using microscale soft

Fig. 1. Development of different phenotypes in cell cultures. (A) Reasons for phenotypic
variations can range from genetic differences to stochastic processes. (B) Hypothetical histogram of a
population average (gray bars) and a single-cell measurement (white and black bars) of the same
parameter (e.g., a metabolite concentration) revealing bistability only in the case of the single-cell
determination. (C) Some examples of metabolites, illustrating the large structural diversity of com-
pounds covered by metabolomics.
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lithography with polydimethylsiloxane (PDMS)
as the material. The dynamic single-cell culture
array (Fig. 2B) allows an arrayed culture of many
individual adherent cells (~100 in a field of view of
~1 mm2). Trapping is passive and self-terminating
in the sense that once a site is filledwith a cell, the
altered hydrodynamic flow around the filled site
prevents other cells from entering it. This device
has not been used for chemical measurements so
far, but it appears to provide a very gentle growth
environment, as shown for the high rate (95%) of
survival of HeLa cells after 24 hours of perfusion
culture on the array. The iMAP array is based on
gravity-driven flow and sedimentation to capture
the cells, with close to 100% capture rate. It fea-
tures open access for fluid exchange; gene expres-
sion, protein immunoassay, and cytotoxicity data
can be accessed in parallel.

Another strategy is the dynamic microfluidic
array based on fluidic resistance (25). The flow

channel has a meander-like shape with some addi-
tional small “bays” (hydrodynamic traps) where
cells get trapped passively. To selectively release
beads or cells from such a bay, a microbubble is
generated by laser heating of an Al pattern near an
individual trap. The authors wrote that the heating
is of no concern for the integrity of the beads that
were investigated (theAl structure reaches temper-
atures of >130°C), but one would probably have
to worry about the transient temperature jump
as an environmental influence to which a cell’s
metabolome would react. Although this device
has so far been developed and operated only with
beads rather than with cells, 100 objects could be
trapped and individually addressed. For single-
cell analyses, such a microfluidic device would
be operated with medium as the circulating liquid
and be used to deliver individually address-
able cells to a subsequent analysis (e.g., by mass
spectrometry).

Microchamber arrays can be used not only for
single-cell isolation but also for the analysis of
intracellular biomolecules. This design is based
on PDMS valves that encapsulate single cells in
circular reservoirs with volumes of ~625 pl. These
microchambers can be opened and closed rapidly
and reversibly; such a design allows incubation,
washing, labeling, and lysis steps to be done with
single cells (35). The lysate remains contained in
the small volume of the microchamber; although
dilution still occurs, it is controlled and limited
such that various target analytes can be directly
studied, cell by cell. This format has been used
for analyzing the cofactors NADH (reduced nico-
tinamide adenine dinucleotide) and its phosphate
NADPH, and for quantitative assays of a number
of intracellular biomolecules, including compounds
such as cyclicAMP (cAMP) in human embryonic
kidney (HEK) T-Rex cells, production of which is
stimulated by the hormone lutropin (36). Attomole
amounts of cAMP (between 250 and 1000 amol,
increasing with the level of stimulation by lutropin)
were detected. Because a competitive enzyme-
linked immunosorbent assay (ELISA) was used
for detection, this format provides the equivalent
of a single-cell immunoassay.

There aremany other microfluidic formats for
single-cell trapping, culturing, and handover to
analysis [for further information, see (31, 37–39)],
although in many cases these are not specially
designed for obtaining chemical information on
metabolites. Some formats allow very interesting
microscopic observations to be conducted—for
example, the observation of aging processes of
budding yeast cells throughout their life span (19),
which revealed remarkable age-associated changes
in phenotypes and substantial heterogeneity in
cell aging and apoptosis. This is, however, not a
metabolomics study, and the same is true for most
other microfluidic platforms: In connection with
metabolomics, their usefulness is to observe and
classify individual cells, stimulate them inside the
microfluidic device, and deliver them in a rapid
but controlled fashion to a subsequent analysis
step that identifies the metabolites.

Nanoscale Devices
Nanoscale devices can be used to manipulate sin-
gle cells or deliver chemicals into cells in a con-
trolled fashion. A nanowire waveguide-based
approach allows single-cell optical endoscopy (40),
a hollow atomic force microscopy (AFM) probe
can be inserted through the cell wall and used
to deliver liquids into the cytoplasm (41), and a
nanochannel has been used to deliver precise
amounts of biomolecules into living cells (i.e.,
a kind of precision transfection technique) (42).
Nanoscale devices are also being developed to
analyze cells, as summarized in (43)—for exam-
ple, optically through near-field methods, through
AFM, or electrochemically by scanning conduct-
ance microscopy. Although much of the relevant
literature cites the potential and especially the need

Fig. 2. High-throughput methods for preparing single cell for chemical analysis. (A) Flow
cytometry of human bone marrow cells, using fluorescent antibodies that bind to cell surface antigens
(here, CD45RA versus CD4). Each dot in the plot originates from a single cell. [Reproduced from (92)]
(B) Microfluidic single-cell trapping array. Upper left: Increasingly higher magnifications depict the cell-
trapping device as a whole (scale bar, 500 mm; cells and media flow enter from the left). Lower left:
High-resolution bright-field micrograph of the trapping array with trapped cells. Lower right: Magnifi-
cation showing the details of one trapped cell. Trapping is a gentle process, and no cell deformation is
observed for routinely applied pressures. Upper right: Diagram of the device and mechanism of trap-
ping (not drawn to scale). [Reproduced, with permission, from (24)] (C) Microarray for mass spectrom-
etry (MAMS) chip. Scale bars, 1440 mm; diameter of individual wells, 300 mm. On a MAMS array the size
of a 1” x 3” microscope slide, 2860 wells can be placed. Chlamydomonas reinhardtii algal cells; chlo-
rophyll fluorescence readout measured with a LS 400 scanner (Tecan, Männedorf/Switzerland). [Image
courtesy of Jasmin Krismer, ETH Zürich, and Jens Sobek, Functional Genomics Center, Zürich]
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Construction of a human cell landscape at 
single-cell level

Xiaoping Han1,2,19ಞᅒ, Ziming Zhou1,19, Lijiang Fei1,19, Huiyu Sun1,19, Renying Wang1,19, Yao Chen3,19, 
Haide Chen1,4,19, Jingjing Wang1,4,19, Huanna Tang5, Wenhao Ge6, Yincong Zhou7, Fang Ye1, 
Mengmeng Jiang1, Junqing Wu1, Yanyu Xiao1, Xiaoning Jia8, Tingyue Zhang1, Xiaojie Ma9,  
Qi Zhang10, Xueli Bai10, Shujing Lai1, Chengxuan Yu1, Lijun Zhu6, Rui Lin11, Yuchi Gao12,  
Min Wang13, Yiqing Wu3, Jianming Zhang14, Renya Zhan15, Saiyong Zhu9, Hailan Hu8, 
Changchun Wang16, Ming Chen7, He Huang2,17,18, Tingbo Liang10, Jianghua Chen5,  
Weilin Wang6, Dan Zhang3 & Guoji Guo1,2,4,17,18ಞᅒ

Single-cell analysis is a valuable tool for dissecting cellular heterogeneity in complex 
systems1. However, a comprehensive single-cell atlas has not been achieved for 
humans. Here we use single-cell mRNA sequencing to determine the cell-type 
composition of all major human organs and construct a scheme for the human cell 
landscape (HCL). We have uncovered a single-cell hierarchy for many tissues that have 
not been well characterized. We established a ‘single-cell HCL analysis’ pipeline that 
helps to de!ne human cell identity. Finally, we performed a single-cell comparative 
analysis of landscapes from human and mouse to identify conserved genetic 
networks. We found that stem and progenitor cells exhibit strong transcriptomic 
stochasticity, whereas di"erentiated cells are more distinct. Our results provide a 
useful resource for the study of human biology.

Individual cells are fundamental units of life. Breakthroughs in 
single-cell mRNA sequencing have greatly enhanced our ability 
to identify the transcriptomes of individual types of cell2–5. Using 
high-throughput barcoding strategies, it is now possible to profile thou-
sands of single cells at the same time6,7. These methods have allowed 
the mapping of cell atlases for whole organisms8–15. For example, cell 
atlases for the mammalian system have been generated by analysing 
both fetal and adult mouse tissues16–19. Despite extensive efforts in 
dissecting the cellular compositions of various human tissues20–32, to 
our knowledge a comprehensive cell landscape for humans has not 
been achieved.

Constructing an HCL using microwell-seq
Microwell-seq is a cost-effective single-cell mRNA sequencing technol-
ogy that offers advantages over existing technologies in doublet rate 
and cell-type compatibility16. Sequencing titration experiments and 
cross-platform comparison suggest that this method can robustly 
detect rare populations even at low sequencing depth (Supplementary 
Table 1, Extended Data Fig. 1a). Using microwell-seq, we embarked 
upon the creation of a basic landscape of major human cell types using 

samples from a Chinese Han population. Donated tissues were per-
fused or washed and prepared as single-cell suspensions using specific 
protocols (Supplementary Table 1). Our analyses included samples of 
both fetal and adult tissue and covered 60 human tissue types (two to 
four replicates per tissue type in general; Extended Data Fig. 1b). We 
also analysed seven types of cell culture, including induced pluripotent 
stem (iPS) cells, embryoid body cells, haematopoietic cells derived from 
co-cultures of human H9 and mouse OP9 cells33, and pancreatic beta 
cells derived from H9 cells using a seven-stage protocol34(Extended 
Data Fig. 1b). Single cells were processed using microwell-seq16 and 
sequenced at around 3,000 reads per cell; data were then processed 
using published pipelines35 (Fig. 1a). Altogether, 702,968 single cells 
passed our quality control tests (Supplementary Table 1).

In a global view, the complete human tissue data set is grouped into 
102 major clusters (Fig. 1b; Supplementary Table 2). Multiple tissues, 
including artery, trachea, pleura, omentum, oesophagus and fallopian 
tube, contributed to the defined adult stromal/mesenchymal cells, 
such as cluster 4 (C4), C18, C27, and C70. Other clusters with substantial 
multi-tissue contributions correspond to fetal stromal cells (C7, C10, 
C17, C19, C21, C64, and C72), endothelial cells (C8, C20, C29, and C66), 
macrophages (C2, C51, C69, and C78), and fetal epithelial cells (C1) 
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(Fig. 1b, c; Supplementary Table 2). We then performed sub-clustering 
analysis for each of the 102 major clusters and predicted a total of 843 
cell-type sub-clusters in the hierarchy (Fig. 1d). Through correlation 
analysis between bulk and single-cell mRNA sequencing as well as cell 
number sub-sampling analysis, we estimated a high gene and cell-type 
coverage of HCL (Extended Data Fig. 1c, d). Multi-donor analysis of 
representative tissues indicates that there are limited donor or batch 
effects on cell-type discovery (Extended Data Fig. 1e). To our knowl-
edge, these data represent the most comprehensive cell-type reper-
toire yet described for the human species. By applying the concept of 

a pseudo-cell36, we can aggregate data from the same cluster to increase 
gene representation and improve cluster separation (Extended Data 
Fig. 2a, b). This strategy enabled us to interpret transcription factor 
(TF) function and generate a correlation network that covers 91% of all 
human TFs (Extended Data Fig. 2c; Supplementary Table 2). A highlight 
of the network suggests that, in the HCL, master TFs work in discrete 
modules to specify major human cell types such as neuron, erythroid 
cell, and acinar cell (Extended Data Fig. 2d). The resource is publicly 
available at http://bis.zju.edu.cn/HCL/ (with a mirror website for inter-
national users at https://db.cngb.org/HCL/).
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Fig. 1 | Constructing an HCL using microwell-seq. a, Illustration of the 
experimental workflow using the microwell-seq platform. b, t-SNE analysis of 
599,926 single cells from the HCL. Differentiated cell culture data and 
granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood 
data were not included. In the t-SNE map, 102 cell-type clusters are labelled by 
different colours. Cell cluster markers are listed in Supplementary Table 2.  
c, t-SNE analysis of 599,926 single cells from the HCL. Differentiated cell culture 

data and G-CSF mobilised PB data were not included. In the t-SNE map, tissues 
are labelled by different colours. Tissue contributions to each cluster are listed 
in Supplementary Table 2. d, Dendrogram showing relationships among 102 
cell types. The bar chart on the left represents the number of sub-clusters in 
each major cluster. A total of 843 sub-clusters were predicted from 102 major 
clusters.
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To understand the specific genetic regulation of human and 
mouse cell types, we performed regulon activity analysis with all 
TFs (Extended Data Fig. 11a, b). We present a list of species-specific 
TF regulons enriched with basic helix–loop–helix, Cys2–His2 zinc  
finger and homeodomain proteins (Supplementary Table 5, Extended Data 
Fig. 11c–e). Nevertheless, most lineage-specific regulons are conserved 
(Supplementary Table 5, Extended Data Fig. 11f). For example, the SOX10 
regulon for oligodendrocytes and SOX11 regulon for neurons are shared 
between human and mouse (Fig. 4d). Notably, the development-related 
SOX4 regulon dominates the unseparated fetal cell clusters; it shows a 
broad and stochastic distribution for both human and mouse (Fig. 4e). 

Consistent with what we have seen for gene expression patterns, the stem 
and progenitor cell regulons lack lineage specificity and stability. However, 
regulons for differentiated cells appear to be more tightly wired; they may 
reach their steady state through continued self-reinforcement.

Discussion
We have used microwell-seq to perform single-cell transcriptomic 
analysis for a wide range of human tissues. The method proved to be 
compatible with nearly all cell types; microwell-seq data generated 
from different systems showed good comparability. The strength of 
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Fig. 4 | Cross-species comparison of cell landscapes. a, Correlation of 
orthologous gene expression between human and mouse cell types. AUROC 
scores were used to measure the similarity of cell types: red, high correlation; 
blue and yellow, low correlation, based on the Spearman correlation between 
all human and mouse pseudo-cells (n = 46,793 pseudo-cells). Cluster and 
species information is marked by different colours. b, Circos plot showing the 
similarity of cell types in human and mouse. Paired cell types with average 
AUROC scores greater than 0.9 are connected by lines. c, Identification of 
regulon modules based on the regulon matrix of the HCL and the MCA. The 

network shows 140 orthologous TF regulons grouped into 15 major modules, 
along with representative TF regulons, corresponding binding motifs and 
associated cell types. d, e, Binary regulon activity scores (RASs) for regulons 
SOX10, SOX11 and SOX4 in the human and mouse regulon activity t-SNE map; 
dark blue dots represent one and grey dots represent zero. Other colours are 
used to mark specific cell types. d, Representative regulons in module 1.  
e, representative regulons in module 12. The regulon activity t-SNE maps were 
based on the binary regulon activity matrix of 17,028 human pseudo-cells and 
16,740 mouse pseudo-cells.



Cell-Cell Interactions

Types of interactions 
between cells:
1. Autocrine
2. Paracrine
3. Juxtacrine
4. Endocrine

Single cell RNA based cellular interaction analysis:
Based on the expression level of ligand and receptor pairs
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Product of ligand and 
receptor expression as 
the score of the 
corresponding L-R pair
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Yurkovich, Nat Rev Clin Oncol 17:183, 2020

Deep Phenotyping

proteomics57) is an approach to studying 
cancer biology that has advanced 
considerably in the past few years. The 
analysis of single cells is not new; rather, 
the omics dimension — the ability to profile 
thousands of transcripts or dozens of proteins 
and tens of metabolites — is the aspect that 
has seen great advances and holds promise to 
investigate the same single cells using multiple 
technologies58,59. Such single- cell omics 
tech nologies enable the characterization 
of previously unapproachable phenomena, 
such as deep landscapes of intercellular 
heterogeneity60, the effects of genetic 
perturbations on individual cells61 and 
the dynamics of gene expression during 
development62 or tumour pathogenesis53.

Single- cell RNA sequencing (scRNA- seq)  
reveals the cellular composition of tumours 
at unprecedented resolution, including  
both cancer cells and tumour- associated 
cells (such as fibroblasts or endothelial cells)63 
in the intratumoural environment. The 
stratification of patients according to 

patterns of tumour cell subpopulations 
(that is, the presence or absence of particular 
subtypes and intratumoural cellular 
diversity)37,38, rather than the presence or 
absence of particular protein markers, is 
an important application of scRNA- seq. 
These studies have successfully identified 
subpopulations of cells with different 
phenotypic properties60, revealing that higher 
intratumoural diversity might be associated 
with an increased risk of progression of 
certain cancers, as characterized in breast 
cancer64. The identification of certain 
phenotypic properties of cell subpopulations 
has provided insights into clinical responses 
to therapy65,66. For example, the absence or 
presence of a response to ICI is associated 
with low or high levels of T cell infiltration 
(referred to as ‘cold’ and ‘hot’ tumour 
microenvironments, respectively)67. 
Proteomic panels have also been used to 
determine the effect of biological network 
perturbations at single- cell resolution68,69, 
helping to measure cell- to-cell variations 

within a population. Thus, deeper 
characterization of tumour heterogeneity 
could inform multifaceted strategies to 
personalize antitumour treatments and 
achieve deeper remissions.

The next generation of single- cell profiling 
tools will be much more powerful, with the 
ability to measure multiple types of analytes 
in the same cell, a primary requirement of 
comprehensive single- cell profiling. In the 
past few years, great advances have been made 
in this area51,58, enabling the simultaneous 
quantification of DNA and RNA70, RNA 
and proteins71, proteins and metabolites59 
or even three or more types of analytes72–74. 
These advanced experimental technologies 
necessitate the development of sophisticated 
algorithms that enable the analysis and 
integration of these new datasets75,76. Profiling 
multiple aspects of individual tumour cells 
helps us to monitor how diverse systems 
interact to influence initiation, progression, 
metastasis, identification of tissue of origin 
and atypical patterns of differentiation.

186 | MARCH 2020 | VOLUME 17 www.nature.com/nrclinonc
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Fig. 2 | A systems approach to clinical oncology. Deep phenotyping 
provides a whole- body profile of the physiological state of an individual.  
When measurements are made longitudinally, trajectories can be mon-
itored to detect and provide insight into transitions from a wellness 
state to disease. A systems approach to the clinical management of a 
specific tissue or tumour uses high- throughput omics technologies to 
provide a characterization at the population or single- cell level.  

The challenge is to integrate these different types of data into a coher-
ent model of the tissue or tumour and combine such data with whole- 
body physiological data to gain a holistic view of the individual. 
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Hoffman, Nature Rev Cancer 15:451, 2015; Salahudeen, Nature Medicine 21:215, 2015
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Figure 3
Humanized mice in cancer biology and therapy. Humanized mice are used as preclinical models for investigation of cancer cell biology,
identification of tumor stem cells, an in vivo platform for identifying and testing potential drug targets, investigation of mechanisms of
tumor metastasis, and evaluation of potential new therapeutics prior to their entry into the clinic. Abbreviation: SCID, severe combined
immunodeficiency.

In a Hu-SRC-SCID model of human breast cancer, neonatal NSG mice were concurrently
injected with CD34+ HSCs and tumor cells (91, 95). T cells and NK cells were able to infiltrate
the tumor microenvironment, and tumor-bearing organs had higher CD4:CD8 T cell ratios, with
a majority of T cells expressing a CD45RA-CD27+ memory phenotype (95). In the Hu-PBL-
SCID model, even though a majority of T cells from both the spleen and the tumor had a memory
phenotype (CD45RA-), splenic T cells included both central memory (CM) and effector memory
(EM) cell populations, whereas a majority of tumor-infiltrating lymphocytes (TILs) were EM.
This differs with the TILs found in primary patient samples that are predominantly CM (96).

To improve myeloid cell development in BRG mice, Rongvaux et al. (97) generated knockin
mice that express human SIRPα, M-CSF, IL-3, GM-CSF, and TPO [C;129S4-Rag2tm1.1Flv

Csf1tm1(CSF1)Flv Csf2/Il3tm1.1(CSF2,IL3)Flv Thpotm1.1(TPO)Flv Il2rgtm1.1Flv Tg(SIRPA)Flv, or MISTRG]
to promote human innate cell development. MISTRG mice engrafted with human fetal liver
HSCs and subcutaneously injected with the human melanoma cell line Me290 showed an M2
macrophage infiltration into the tumor microenvironment similar to that observed in primary
tumors. Tumor growth was increased in Hu-SRC-SCID MISTRG tumor–bearing mice when
compared to Hu-SRC-SCID NSG tumor–bearing mice, suggesting that macrophages/myeloid
cells promote tumor growth (97).

Natural Killer Cells and Cytokine Therapy
NK and natural killer T (NKT) cells mediate tumor immune surveillance, and alterations in both
number and function of NK and NKT cells have been associated with different tumor types (98).
Efforts to stimulate NK and NKT cell antitumor activities have focused on the use of cytokine
therapies.

HSC-engrafted NSG mice were injected with a human neuroblastoma cell line and ex vivo
expanded human NKT cells. NKT cells were found within the tumor microenvironment, where
they colocalized with tumor-associated macrophages (TAMs). CCL20 secreted by TAMs, how-
ever, inhibited survival and function of the NKT cells, allowing tumor growth. By transducing
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Humanized mouse models

Patient-derived orthotopic xenografts: 
better mimic of metastasis than 
subcutaneous xenografts
Robert M. Hoffman1,2

The majority of human solid tumours do not metastasize when grown subcutaneously in 
immunocompromised mice; this includes patient-derived xenograft (PDX) models. However, 
orthotopic implantation of intact tumour tissue can lead to metastasis that mimics that seen 
in patients. These patient-derived orthotopic xenograft (PDOX) models have a long history 
and might better recapitulate human tumours than PDX models.

The introduction of the athymic nu/nu mouse (nude 
mouse) for the growth of human tumours in 1969 
changed the paradigm of basic and applied cancer 
research. Human tumours could now be grown for the 
first time in a mouse model owing to the nude mouse’s 
lack of a thymus and T cells. Rygaard and Povlsen1 
implanted a colon cancer from a 71-year-old patient 
subcutaneously (s.c.) in nude mice, which grew as a 
well-differentiated adenocarcinoma similar to that from 
the donor patient. The tumours grew as local nodules 
and were encapsulated and did not metastasize, and 
they were maintained over 7 years for 76 passages. This 
was the first patient-derived xenograft (PDX). What 
is currently described as PDX does not differ substan-
tially from what Rygaard and Povlsen described in  
1969 (REF. 1).

Discrepancies have been repeatedly described 
between the invading and metastasizing abilities of 
tumours in the patient compared to the benign tumour 
behaviour in the s.c.-transplanted xenografts in nude 
mice. The vast majority of human solid tumours, 
growing s.c. in the nude mouse, did not metastasize. 
The s.c.-transplanted tumours had local expansive 
tumour growth with circumscribed tumour borders 
without apparent invasion1. This is still the case of 
PDX models today2.

Wang and Sordat et al.3 in 1982 were among the first 
to implant human tumours orthotopically (literally ‘cor-
rect surface’) in nude mice rather than ‘heterotopically’ 
(literally ‘different surface’, such as s.c.). Colon cancer cell 
suspensions were injected within the descending part 
of the large bowel of nude mice. Metastases as well as 
local tumour growth occurred. This seminal study indi-
cated that tumour implantation at the orthotopic site, 
or site corresponding to the origin of the tumour in the 

patient, allows the tumour to behave more similarly to 
the tumour in the patient and strikingly different from 
s.c.-transplanted tumours3.

Subsequent studies from Fidler’s laboratory and others 
have shown that the implantation of many types of 
human tumours in the orthotopic sites of nude or other 
immunodeficient mice resulted in metastasis of human 
tumours4. However, these early models of metastasis 
involved orthotopic injection of either tumour cell lines 
or, occasionally, disaggregated patient tumours, and 
often had low frequencies of metastasis.

My colleagues and I pioneered the patient-derived 
orthotopic xenograft (PDOX) nude mouse model 
with the technique of surgical orthotopic implanta-
tion of intact colon cancer tissue5. A greater extent of 
metastasis was observed in orthotopic models with 
implanted intact tumour tissue compared with ortho-
topically implanted cell suspensions (for example, in 
stomach cancer6). This perhaps is due to the intact 
histology and cancer-cell stroma interaction of the 
orthotopically-implanted tumour tissue.

PDOX models from patients with colon5, pancreatic7, 
breast8, ovarian9, lung10 and stomach cancer11, and meso-
thelioma12 were established in the early 1990s, resulting 
in primary and metastatic tumour growth very similar to 
that of the patient. For example, in a clinical correlative 
study of 20 of 36 stomach cancers that grew orthotopi-
cally in nude mice after implantation of intact tissue, five 
had clinical liver metastases and all five cases resulted 
in liver metastases in the nude mice11. Six patients had 
clinical peritoneal involvement of their tumour and, of 
these, five resulted in peritoneal metastasis in the nude 
mice11. In another case, a patient-derived colon-cancer 
lung metastasis grew in the lung, but not colon or skin 
of nude mice13.

1AntiCancer Inc.,  
7917 Ostrow Street,  
San Diego, California 92111, 
USA.
2Department of Surgery,
University of California San 
Diego, 402 Dickinson Street
MPF Building, Ste 2-250
San Diego, California  
92103-8220, USA.
Correspondence to R.M.H. 
e-mail: all@anticancer.com
doi:10.1038/nrc3972
Published online  
18 June 2015
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Single Lgr5+ stem cell-derived self-organizing 3D 
epithelial structures reminiscent of normal gut

Sato, Nature 459:262, 2009

Patient Derived Organoids

manipulating the genes responsible for the disorder, 
while organoid models can be directly generated from 
affected patients without prior knowledge of the spe-
cific genes responsible. This is particularly relevant for 
multigenic disorders such as inflammatory bowel disease, 
provided that the pathology is caused by the affected epi-
thelium, and for cancers, where cancer organoids can be 
directly isolated from the patient141–146.

Human organoid cultures have a number of poten-
tial benefits over animal models (BOX 3): organoids 
provide faster and more robust outcomes, are more 
readily accessible and provide both a more accurate 
representation of human tissue and a larger quantity 
of material to work with than animal models do. The 

mouse is one of the animal model systems most fre-
quently used to explore human biology and disease, 
owing to its similarity to humans, in comparison with 
other animal models, and to the ability to generate 
transgenic and knockout mouse strains. However, the 
generation of a conventional transgenic mouse model 
to address questions regarding human disease gener-
ally takes more than a year, even with the technological 
advance of CRISPR–Cas9-mediated precision genome 
editing147–149. Furthermore, differences in microbiota 
and pathogen composition between animal models and 
humans, as well as the failure of certain phenomena 
observed in mice to translate directly to humans, limit 
the utility of animal models in human disease research150. 
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Fig. 4 | Potential applications of human organoids. Two types of organoids are widely used, derived from either 
pluripotent stem cells (PSCs) or adult stem cells (AdSCs). Organoids can be used for (1) basic research, including studies of 
human biology aiming to understand developmental processes, responses to external stimuli and stress signals, cell-to-cell 
interactions and mechanisms of stem cell homeostasis; (2) biobanking, whereby samples obtained from patients can be used 
to generate patient-derived organoids and stored as a resource for future research; (3) disease modelling, to understand  
the mechanisms of human diseases such as infectious diseases, inheritable genetic disorders and cancer using various 
laboratory techniques, including omics and drug-screening analyses; and (4) precision medicine, in which patient-derived 
organoids can be used to predict response to drugs and as resources for regenerative medicine coupled with genetic 
engineering. ECM, extracellular matrix.

Multigenic disorders
Diseases caused by more  
than a single genetic factor.
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“Interception” Research

üPrevention
üEarly Detection
üEarly Intervention 



• A big part of prevention is early detection. There’s been recent progress in the 
development of multi-cancer early detection tests. What are your thoughts 
about these tests?

• The big question is: Can we detect the cancer at an early enough stage that we
reduce the risk of death from that cancer? That’s the litmus test for any cancer
screening test.





“Interception” Research

üPrevention
üEarly Detection
üEarly Intervention 



Yurkovich, Nat Rev Clin Oncol 17:183, 2020

Integrating Longitudinal Deep Phenotyping

recurrence of certain cancers). High- fidelity 
identification of deviations from a wellness 
state into the early stages of cancer could 
enable the detection of disease before clinical 
phenotypes manifest, with the subsequent 
possibility of introducing therapies early 
enough to prevent the transition to overt 
disease (FIG. 3).

One strategy to start generating 
this kind of dense, longitudinal data 
involves conducting a personal wellness 
programme30,106 in ~6,000 individuals who 
have provided consent for their data to 
be used for research purposes. These data 
provide a wealth of information that can be 
gathered well in advance of disease onset. 
In this case, blood draws were performed 
regularly (for example, at 6-month intervals) 
to longitudinally monitor the health 
status of each individual. The detection of 
outliers among analytes can provide early 
warning signs of a state transition. With 
the accumulation of data and appropriate 
testing, this strategy might ultimately lead 
to early- stage cancer diagnostics for each 
individual as the ability of the clinical 
community to interpret these signals 
continually improves.

The deep study of disease progression  
on an n- of-1 basis is vital to understanding 
how to design treatments. For example, 
as many as 90% of glioblastomas are 

diagnosed without a prior clinical 
history107; these late- stage diagnoses 
limit any insights into the early stages of 
glioblastoma progression and therefore our 
knowledge of the later stages of the disease. 
Genetically engineered mouse models of 
this malignancy provide one avenue for the 
study of disease progression108,109. Indeed, 
we previously studied the progression of 
prion disease in mice, identifying network 
characteristics that change with the 
development of the disease109. Similarly, 
through the introduction of mutations in 
members of three signalling pathways with 
key roles in cancer (retinoblastoma, KRAS 
and p53), we examined transcriptional 
networks over the course of tumour 
development and identified the contribution 
of different coordinated changing networks 
to the pathogenesis of glioblastoma110. 
Perturbations affecting selected proteins 
from these pathways can then be detected 
in the blood of animals with glioblastoma as 
indicators of disease onset110. Subsequently, 
studies of the signalling pathways involved 
in glioblastoma progression in humans 
have been undertaken111. Interestingly, 
virtually all the major features of 
cancers can be explained by distinct 
disease- perturbed networks112.

As longitudinal deep- phenotyping 
data are accumulated, an important 

area of study will be the detection and 
characterization of transitions from wellness 
to disease. Modelling the finite states in 
the development of disease (reflecting 
wellness, ‘pre- disease’ and disease)113 using 
the theory and tools from disciplines 
such as nonlinear dynamics47,114 might 
help to identify transitions between these 
states. Nonlinear dynamical modelling 
could provide fascinating insights with 
the novel application of existing tools to 
decipher the complexities of cancers115. 
Furthermore, building these models from 
data collected for each individual will usher 
in new possibilities for the development of 
personalized and targeted treatments.

Developing personalized therapies
Personalized medicine requires deep 
understanding of both the wellness and 
disease states in an individual in order 
to administer tailored therapies; the 
technologies currently available make this 
goal increasingly feasible. For example, 
scRNA- seq can help to quantify the extent 
to which cells with similar genomes exist in 
transcriptionally different states, reflecting 
nongenetic heterogeneity116 and differing 
pharmacological susceptibilities even within 
the same population117. The oncology 
community is only beginning to unravel this 
new level of heterogeneity and understand 

www.nature.com/nrclinonc
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Fig. 3 | A systems approach to integrating longitudinal deep phenotyping. Such an approach enables earlier detection of state transitions, as well as 
providing the possibility of actively preventing a transition to clinical disease through a targeted intervention. If detected early enough, a ‘pre- disease’ 
state (onset of disease) has the potential to be reversed back to a wellness state (top panel), while advanced- stage disease states might become irreversible 
(bottom panel).



Gough, Science Signaling 8:408, 2015

The computable cell: In silico modeling

Population heterogeneity in efficacy and toxicity



Zeisel, Frontiers Genetics 10:200, 2019

Diet assessment (e.g, biomarkers for assessment of diet)

Genetic variation (e.g., studies that collect genetic data; ancestral heritage)

Epigenetic variation (e.g., assessment of epigenetic changes that alter metabolism 
and chronic disease)

Microbiome variation (e.g., effects of diet on microbiota populations and function)

Exposure variation (e.g., methods to assess environmental exposures)

Lifestyle variation (e.g., better biomarkers, instruments to assess lifestyle & behavior 
patterns)

Systems biology (e.g., utilize tools to assess interactions between “omic” data sets, 
e.g., to predict outcomes)

Translation to practice and policy (e.g., develop training programs in precision 
nutrition-guided interventions; conduct advanced evidence synthesis and dietary 
guidance on nutrients, foods and dietary patterns)

Explore Individual Variability
Armamentarium to predict biological and behavioral response patterns



Systems Biology
Use of a virtual machine learning KO tool (scTenifoldKn) to predict

transcriptional changes related to stem cell reprogramming

A – Network Construction
Random or 

pseudotime-
guided

cell 
subsampling

Network 
construction
PC regression

CANDECOMP/PARAFAC (CP)
tensor decompositionscRNAseq data

(WT sample)

Adjacency matrices
(n×n×t)

(n×m gene-cell matrix)

(n×m’, m’<m)

+ +…+

a1 a2 ar

b1 b2 br

c1 c2 cr

Denoised 
adjacency matrices

(n×n×t)
Denoised weight-
averaged network

(n×n)

A0

B0 C0

D0

E0

#

M

C – Manifold Alignment

Manifold Alignment

dD dE
dC

dB

dA

↑ - significant

A1

B1 C1

D1

E1

N

B – Virtual KO

Manifold 
Alignment

Network 
Construction 

(scTenifoldNet)

Expression Matrixn×p

Adjacency Matrixn×n

(2) Set entire 
row to zero

(1) Copy 
adj. matrix

Identification of virtual-KO 
disturbed genes

James Cai

scRNAseq data 





• Immunotherapy is now being studied as a potential way to help prevent 
cancer. Where does this research stand?

• Immunotherapy has been a great advance for cancer treatment. So this
“immunoprevention” research is essentially looking at whether we can
harness the immune system as a form of cancer surveillance, to detect and
snuff out cells with the earliest changes that will lead to cancer.

• A new initiative to promote the discovery of preventive therapies, and that will
include some immunoprevention drugs. In particular, we’re expanding
activities around developing preventive agents for those at high risk for
cancer, such as those with a genetic predisposition like Lynch syndrome. The
idea is to start this work with a focus on the highest-risk groups.

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046356&version=Patient&language=en
https://prevention.cancer.gov/news-and-events/blog/vaccine-prevent-hereditary


Zitvogel, Science 359:1366, 2018



• Diet and exercise are areas of intense interest in cancer prevention. Where do 
you think these two areas fit into the overall prevention picture?

• The thought is definitely out there that if you eat this specific thing or avoid this
other thing, you’ll prevent cancer. Unfortunately, no specific foods or activities
are proven to prevent cancer, except perhaps avoiding cooked red meat, and
there are numerous factors that make research to identify such factors difficult
to do.

• We know that obesity increases the risk for about 13 cancers. And we know that
a healthy lifestyle, including weight management, will likely reduce your cancer
risk. Of course, not everyone has equal access to healthy foods and things that
promote healthy behaviors and much of that is influenced by policy matters.



ü4 Factors Reduce Risk of Developing Chronic Disease by 78% and 
Cancer by 36%

üHave a Body Mass Index < 30

üNever Smoke

üPerform 3.5 h/wk or more Physical Exercise

üAdhere to Healthy Dietary Principles (High Intake of Fruits, 
Vegetables, Whole-Grain Bread and Low Meat Consumption)



Dietary Chemoprevention:
The missing ingredient

Human Malignancies are linked to: 

35% to diet, 14-20% to obesity

Coussens, L.M., Science 339:286, 2013



Zitvogel, Nature Immunol 18:843, 2017



Zitvogel, Nature Immunol 18:843, 2017



Martucci, Nutr Rev 75:442, 2017
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Obesity-Related Cancers: Breast, colon, endometrial & kidney

Similar data Miyagi Cohort  (>10,000 Japanese women)  - Kawai, Br J Cancer, Sept 2010
Parker, Intl J Obes Relat Metab Dis 27:1447, 2003

Also PRETTY SURE that Intentional Weight Loss Reduces Risk 
for Several Cancers

…at least among adult women and for obesity-related cancers 



Tajan, Cancer Cell 37:767, 2020
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The concept that dietary changes could improve the response to cancer therapy is extremely attractive to
many patients, who are highly motivated to take control of at least some aspect of their treatment. Growing
insight into cancer metabolism is highlighting the importance of nutrient supply to tumor development and
therapeutic response. Cancers show diverse metabolic requirements, influenced by factors such as tissue
of origin, microenvironment, and genetics. Dietary modulation will therefore need to be matched to the spe-
cific characteristics of both cancers and treatment, a precision approach requiring a detailed understanding
of the mechanisms that determine the metabolic vulnerabilities of each cancer.

Introduction
What we eat and how thismight affect our health has been a topic
of intense interest for millennia. The Greeks and Romans under-
stood the link between food and wellbeing, and diet books
promoting moderation as a route to longevity have been with us
since the 15th century. Throughout the last 100 years, innumerable
dietary experts—some qualified, some not—have advocated
virtually every conceivable variation of nutritional input as a cure
for obesity and a multitude of other diseases, including cancer. It
is evident that nutritional choices can influence the risk of devel-
oping certain malignancies, although the mechanistic bases
behind these associations are generally poorly understood
(Mayne et al., 2016; Steck and Murphy, 2020). Similarly, the
concept thatdiet can influencecancer therapyholdsgreatpopular
appeal, and about half of all cancer patients change their dietary
habits in an effort to improve survival (Zick et al., 2018). Unfortu-
nately, the effectiveness ofmanyof these diets has not been rigor-
ously assessed, andadvice in this realm isoftennot basedonsolid
mechanistic insight. Nevertheless, clear progress is being made,
and in this review, we consider how our increasing understanding
of cancer metabolism is leading to the development of evidence-
based nutritional interventions for cancer therapy.
Around a century ago, Warburg first noted metabolic changes

that accompany malignant progression, observations that have
been clinically exploited in the use of 18F-deoxyglucose positron
emission tomography (Koppenol et al., 2011). But why cancers
show altered metabolism, and whether this is necessary for the
malignant phenotype or simply a side product of oncogenic trans-
formation, has been the topic ofmuchdiscussion since then.Over
the past 20 years, we have begun to understand the importance
anddiversity ofmetabolic changes that can contribute to and sup-
port tumor development. These are described in many excellent
reviews (for example DeBerardinis and Chandel, 2016; Pavlova
and Thompson, 2016; Vander Heiden and DeBerardinis, 2017)
and are not considered in detail here.
Themetabolism of cancers is complex and dependent onmul-

tiple factors, including the genetic and epigenetic alterations in
the tumor cells, the environment surrounding the cancer, its tis-
sue of origin, and the impact of systemic host metabolism
(Mayers et al., 2016; Yuneva et al., 2012). Metabolic rewiring
contributes to all steps of tumor progression (Elia et al., 2018)

and supports the enhanced nutrient, energy, and redox de-
mands of cancer cells, allowing biomass production, cell growth,
and survival (DeNicola and Cantley, 2015; Hosios and Vander
Heiden, 2018; Palm and Thompson, 2017). Considerable prog-
ress has been made in understanding the effect of commonly
occurring oncogene and tumor suppressor gene mutations on
cancer metabolism (DeBerardinis and Chandel, 2016; Labu-
schagne et al., 2018; Qiu and Simon, 2015) and how the
increased oxidative stress that accompanies the oncogenic
process is buffered by metabolic alterations that drive
enhanced antioxidant defense mechanisms (Gorrini et al.,
2013; Hawk et al., 2016). Tumor cells also influence the behavior
of surrounding stromal cells, and cancers are adept at utilizing
and manipulating their surroundings to provide nutrient support.
Furthermore, the tumor microenvironment and local nutrient
availability (which are highly dependent on the tissue of origin
and location of the tumor) have a profound effect on tumor devel-
opment and therapeutic response, and the nutrient availability to
the tumor may differ from that of normal tissue. At present, our
ability to accurately study these interactions in vitro are still
extremely limited (Muir and Vander Heiden, 2018).
It is clear that different cancers show a vast range of metabolic

activities, but despite the complexity of metabolic transforma-
tion, there is growing evidence that the metabolic changes that
support oncogenic progression may induce selective vulnerabil-
ities that can be exploited for cancer prevention or treatment
(Bajpai and Shanmugam, 2018). Folate pathway inhibitors such
as methotrexate and 5-fluorouracil have been important chemo-
therapies for 70 years, and many more small molecules that
target metabolic pathways are now under development (Luengo
et al., 2017; Tennant et al., 2010).Wewould like to consider alter-
native (or more likely an additional) approaches to the use of
these drugs, emphasizing some recent progress in the develop-
ment of defined diets to modulate metabolism during cancer
therapy. In this review, we explore the therapeutic potential of di-
etary modulation of fat, carbohydrate, and protein, with a partic-
ular focus on diets selectively deprived of individual amino acids.
We consider how these diets could be combined with other ther-
apies to maximize effectiveness and discuss the importance of
the tumor microenvironment and the whole-body response to
nutritional intervention.
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Another important consideration is that dietary manipulation
will lead to a systemic response that is not restricted to the tumor
itself but will also have an impact on other stromal players such
as the immune system and whole-body homeostasis in general.
Therefore, a holistic view of the effect of dietary restriction that
aims to preserve a functional anti-tumor immune response and
avoids the development of cachexia should be taken. It is impor-
tant to bear in mind that dietary manipulations for cancer therapy
are likely to be short term and coordinated with other treatment
regimes. Limiting the time spent on a restricted diet may reduce
unwanted collateral effects and improve the likelihood of patient
compliance. Importantly, the efficacy of fasting cycles or cycles
of FMD in dampening tumor development has already been
established (Brandhorst et al., 2015; Lee et al., 2012), and the im-
plementation of other dietary approaches for cancer therapy is
likely to take a similar approach.

There is still much to be learned, but it seems evident that a
deep understanding of how diet can interface with the complex
interactions between the cancer, the microenvironment, and
systemic metabolism will allow us to offer patients rational and
bespoke advice on nutritional intake that will maximize the effect
of their therapy.
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Precision Prevention and Early Detection of Cancer: 
Fundamental Principles

Principle Key concepts

Risk quantification Identification of individuals who will maximally benefit from
prevention or early-detection strategies based on genetic,
molecular, and other biomarker information. Risk may be conferred
by inheritance, existence of preneoplastic condition, or exposure.

Mechanistic foundation An understanding of the basic biology of early carcinogenesis
events, including genomic susceptibility, metabolic reprogramming,
drivers of preneoplasia, the tumor microenvironment, immune
modulation, and biomarkers that may define etiologic and risk
heterogeneity.

Heterogeneity in 
phenotype and response

Preventive interventions or early-detection strategies may have
different efficacy and toxicities in certain individuals based on their
biological characteristics.



Principle Key concepts

Timing A prevention “sweet spot” may exist in terms of the timing of the
preventive intervention or detection method. Optimal timing of
preventive interventions or early-detection strategies requires a
clear understanding of the etiologic window in which
carcinogenic events are working.

Effective prevention 
modalities

Effective interventions including risk-reducing surgery to remove
tissue at risk, exposure modification, vaccination including
immunoprevention, chemoprevention, treatment or removal of
premalignant lesions, screening and early-detection methods
based on molecular events. The optimal application of these
interventions may depend on an individual’s underlying risk
profile.

Consideration of 
unintended effects

Favorable risk-benefit ratios for patients and/or cost-benefit
ratios to governments or insurers may exist. Some very high-
risk individuals may accept more intensive/invasive extreme
preventive strategies (that may confer higher levels of toxicity)
that would not be acceptable to the general population.

Rebbeck, Cancer Discovery 8:803, 2018



üLess than 1.5% of
total biomedical 
research funding is 
devoted to prevention 
programs 
(Colditz, Sci Transl Med 4:127rv4, 2012; 
Ludwig, Science 362:764, 2018)
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