Why does cancer research focus on treatment, not prevention?

Robert S. Chapkin, Ph.D.

Allen Endowed Chair in Nutrition Distinguished Professor Program in Integrative Nutrition & Complex Diseases Texas A&M University

ZHAPKIN LAB

PROGRAM IN INTEGRATIVE

Prevention Advice

Vogelstein, Science Trans Med 4:127, 2012

Bert Vogelstein is Co-director of the Ludwig Center

... if the current trends continue, the number of cancer cases diagnosed annually by 2050 is likely to double as a result of population aging. So if we as a society hope to head off the coming storm, we better get more serious about cancer prevention soon.

Prevention is as good as a cure

Priorities for the US Cancer Moonshot Initiative face an uncertain funding future — but it must not ignore proven prevention programmes in favour of glitzy research.

Editorial, Nature 539: 467, 2016

CANCER RESEARCH

Cancer prevention: Molecular and epidemiologic consensus

Research in many fields emphasizes the value of prevention

"...cancer death rates could be reduced by 70% around the world, even without the development of any new therapies."

Interception Research

✓ Prevention
 ✓ Early Detection
 ✓ Early Intervention

"Molecular basis for dietary chemoprevention"

GIVENTION EDUCATION SYMPTOM MAN PREVENTIVE AGENTS LIFESTYLE ANAGEMENT **OBESITY** CANCER PREV FI TICS MMUNOPREVENTION **PRECISION PREV** EARLY DETECTION NTION F **BIOMARKERS** RISK FACTORS **SYMPTOM SCIENCE** GENET

Chemoprevention Challenges

New technologies let us interrogate the biology of premalignancy

to find ways to stop or reverse the development of cancer

Transforming cancer prevention research

Source: NCI Division of Cancer Prevention

1 http://prevention.cancer.gov/about-dcp/scientific-scope

Target the Early Prevention of Cancer

West, Nat Rev Immunol 15:615, 2015

Biomarkers of chronic inflammation in disease development and prevention: challenges and opportunities

Liu, Nature Immunol 18:1175, 2017

Obesity

Enhanced: fever, sickness behavior, cognitive and emotional alterations, risk for diabetes, cardiovascular disease, mortality to infections?

FIGURE 3. Obesity affects responsiveness to systemic infection and inflammation

Rummel, Physiology 31:117, 2016

colorectal, endometrial, esophageal, gallbladder, kidney, ovarian, pancreatic and postmenopausal breast cancer

PHOTO © MALERAPASO / ISTOCK

CANCER SURVIVORS

MORE THAN TWO-THIRDS OF THOSE DIAGNOSED WITH CERTAIN CANCERS ARE OVERWEIGHT OR OBESE. PHOTO © YUSAKU TAKEDA / I STOCK / THINKSTOCK

Targeting Inflammation in Cancer Prevention and Therapy

	Estimated new cases	Risk factors correlated with	
Cancer type	in 2016	inflammation	
Pancreas	53,070	Cigarette smoking, chronic pancreatitis diabetes,	
		obesity, Lynch syndrome	
Lung and bronchus	224,390	Cigarette, cigar and pipe smoking, bronchitis	
Stomach	26,370	H. pylori	
Colon and rectum	134,490	Obesity, physical inactivity, long-term smoking, alcohol consumption,	
		chronic inflammatory bowel disease (e.g., ulcerative colitis or Crohn disease)	
Esophagus	16,910	Reflux esophagitis, Barrett esophagus	
Lymphoma	81,080	Epstein-Barr virus, HIV	
Liver and intrahepatic bile duct	39,230	HBV and/or HCV, heavy alcohol consumption, obesity, diabetes, tobacco smoking, cholangitis	
Melanoma of the skin	76,380	Skin inflammation	
Uterine cervix	12,990	HPV	
Uterine corpus (endometrium)	60,050	Obesity and abdominal fatness Lynch syndrome and diabetes	
Brest cancer	246,660	Obesity, long-term, heavy smoking, physical inactivity, and alcohol consumption	
Urinary bladder	76,960	Smoking, cystitis/bladder syndrome	
Oral cavity and pharynx	48,330	Excessive alcohol consumption. HPV infection, tobacco use	
Kidney and renal pelvis	62,700	Obesity and tobacco smoking, chronic renal failure	
Leukemia	60,140	Obesity, cigarette smoking, T-cell leukemia virus type I (HTLV-I)	

Table 1. Risk factor and inflammatory conditions correlated with cancer development and estimated new case from Cancer Statistics, 2016

NATIONAL CANCER INSTITUTE

Cancer Prevention Interventions AVAILABLE TODAY BECAUSE OF RESEARCH

MEDICATIONS proven to reduce risk of breast and colon cancers in those at increased risk.

LIFESTYLE (*) (*) Such as avoid or quit tobacco, limit alcohol, avoid known carcinogens, keep active & avoid obesity.

TREATMENTS FOR INFECTIONS

known to increase cancer risk, including hepatitis C, HIV, and H. pylori.

VACCINES TO PROTECT

against infection with human papillomavirus (HPV) and hepatitis B.

SURGERY

to remove tissues at risk , such as for women with increased risk of breast and ovarian cancer. Philip Castle, Ph.D., M.P.H., joined NCI in July 2020 as director of the Division of Cancer Prevention (DCP). To mark his first year as DCP director, Dr. Castle discusses DCP's priority areas and his vision for making more rapid progress in cancer prevention.

- What do you see as the most promising possibilities for, and barriers to, real progress in cancer prevention over the next decade?
- There are a variety of areas of promise. One area that we're working very hard to develop is precision cancer prevention. What I mean by that is using what we know about a person—their genetics, <u>risk factors</u>, lifestyle—to tailor our prevention strategies. And as an anchor to that, we're using molecular sciences to flesh out the best approaches for advancing this work.
- At the same time, we want to democratize cancer prevention, developing new strategies that make proven prevention measures more broadly accessible, particularly for underserved populations. For instance, efforts to expand the use of <u>self-sampling with HPV DNA testing for cervical</u> <u>cancer screening</u>.

 As for barriers to progress, I see two major issues. One that has been called the "prevention paradox": If we're successful with prevention, there's nothing to observe because we've avoided a bad outcome—cancer. It's what I call an "event bias," where we tend to notice the events that occur rather than the absence of events.

 A second barrier is the benefits-to-harms ratio of any prevention-focused interventions. When you're talking about cancer prevention, you're primarily dealing with generally healthy people. So the tolerance for any side effects from a prevention <u>intervention</u> is very low. Many people won't get cancer in their lifetime, and you don't want to harm anybody who was never going to get cancer.

"Interception" Research

✓ Prevention ✓ Early Detection ✓ Early Intervention

- Prevention is a broad topic. Have you identified priority areas for the division?
- One is developing preventive agents. That involves identifying "druggable" targets for preventive drugs and developing the drugs themselves. That work is anchored in molecular sciences, understanding cancer-promoting signaling pathways in cells and how to interrupt them, and using that information to develop new pharmacologic agents or repurpose existing drugs for use in cancer prevention.
- The second research arc is **discovering** <u>biomarkers</u> that can identify who is at increased risk of cancer. Eventually, those two areas will come together: We will be able to use a biomarker that can identify who's at risk, and then provide a preventive agent to mitigate that risk, based on an individual's underlying biology.
- Once we understand the biology and genetics of cancer-related and treatmentrelated symptoms—that is, symptom science—we can better tailor the use of current medications to prevent and/or alleviate symptoms and develop new, more effective medications in the future.
- This has an important impact on <u>survivorship</u>: The longer we keep people with cancer healthy, the more likely they are going to be able to get the next-in-line therapy and even therapies that have not been invented today but will be tomorrow.

Cancer chemoprevention by dietary constituents: a tale of failure and promise

Andreas J Gescher, Ricky A Sharma and William P Steward

✓ Heterogeneity in response ✓ Dietary bioactives and drugs are pleiotropic ✓ Need to elucidate molecular mechanisms of action

Lancet Oncol 2001; 2: 371-79

What Contributes to Individual Variability?

Zeisel, Ann Rev Food Sci Technol 11:71, 2019

Does One Approach Fit All?

MORTALITY

What Contributes to Heterogeneity in Response?

Gut Microbiome

Gut microbiota is associated with many chronic diseases in humans

Schroeder, Nature Medicine 22:1079, 2016

Host-Microbe Interactions Drug/Diet Responsiveness & Failures

Koppel, Science 356:1246, 2017

Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8⁺ T cell immunity

 Gut microbial metabolites improve chemotherapy efficacy via regulating CD8⁺ T cells

• Butyrate supplementation improves the antitumor therapy efficacy

He, Cell Metabolism 33:988, 2021

What Contributes to Heterogeneity in Response to Treatment?

Cell Heterogeneity

Iable 2 Iranscriptional identified consensus molecular subtypes (CMS)				
Tumour subtype	CMS1 MSI/immune	CMS2 canonical	CMS3 metabolic	CMS4 mesenchymal
Proportion*	~15%	~40%	~10%	~25%
Genomic features	Hypermutated	SCNA high	Mixed MSI	SCNA high
Genetic drivers	BRAF	APC	KRAS	Unknown
Associated precursors	Serrated	Tubular	Unknown	Serrated
Gene-expression signature	Immune	Wnt/MYC activity	Metabolic deregulation	 TGFβ / EMT High stromal content
Prognosis	Intermediate	Good	Intermediate	Poor

EMT, epithelial–mesenchymal transition; MSI, microsatellite instability; SCNA, somatic copy-number alterations.*Approximately 10% of cases are not reliably classified into one tumour subtype. Adapted with permission from Guinney J. *et al.* The consensus molecular subtypes of colorectal cancer. *Nat. Med.* **21**, 1350–1356 (2015).

LETTER

doi:10.1038/nature13187

Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers

Allison S. Cleary^{1,2}, Travis L. Leonard^{1,2}, Shelley A. Gestl^{1,2} & Edward J. Gunther^{1,2,3}

Modeling the process of human tumorigenesis

Depiction of subclonal evolution and diversification of cell types in developing malignant populations

Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer

Comprehensive, integrated molecular analysis identifies molecular relationships across a large diverse set of human cancers, suggesting future directions for exploring clinical actionability in cancer treatment.

Hoadley, Cell 173:291, 2018

The Immune Landscape of Cancer

Thorsson, Immunity 48:812, 2018

Comprehensive Characterization of Cancer Driver Genes and Mutations

Bailey, Cell 48:371, 2018

Unravelling biology and shifting paradigms in cancer with single-cell sequencing

	Single-cell genomics		Single-cell transcriptomics	
Chemistry	DOP-PCR ^{24,31,86}	MDA ^{30,164,192}	Full-length cDNA ^{27,98}	Transcriptome tagging ^{28,29}
Advantages*	Uniformity of coverage	High genome coverage	Coverage across entire transcript	mRNA molecule tagging and counting; amenable to high multiplexing
Disadvantages*	Low genome coverage	Non-uniform amplification of genome	Not yet compatible with highly parallel multiplexing	Does not provide coverage of entire transcript
Application	CNA analysis	SNV analysis	In-depth analysis of single-cell transcriptome	Highly quantitative analysis of transcript abundance across many cells

 Table 1 | Overview of the most commonly used single-cell sequencing technologies

CNA, copy number alteration; DOP-PCR, degenerate oligonucleotide priming-PCR; MDA, multi-displacement amplification; SNV, single nucleotide variant. *Advantages and disadvantages of the methods are based on empirical, comparative studies between whole-genome amplification (WGA) and whole-transcriptome amplification (WTA) methods carried out by multiple independent groups^{208–213}.

Baslan, Nature Rev Cancer 17:557, 2017

Single Cell Multi-omics

REVIEW SUMMARY

Single-Cell Metabolomics: Analytical and Biological Perspectives

D

۸

Zenobi, Science 342:1201, 2013

Construction of a human cell landscape at single-cell level

Cell-Cell Interactions

Single cell RNA based cellular interaction analysis: Based on the expression level of ligand and receptor pairs

Types of interactions between cells:

- 1. Autocrine
- 2. Paracrine
- 3. Juxtacrine
- 4. Endocrine

Product of ligand and receptor expression as the score of the corresponding L-R pair

Inferred interaction numbers (L-R pairs)

Vertex size: number of cells Edge thickness: number of inferred L-R interactions Color of edges: consistent with sender cells

Deep Phenotyping

Yurkovich, Nat Rev Clin Oncol 17:183, 2020

Humanized mouse models

Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts

Hoffman, Nature Rev Cancer 15:451, 2015; Salahudeen, Nature Medicine 21:215, 2015

Valo, Malaro Too.LoL, Looo

21:571, 2020

"Interception" Research

✓ Prevention
 ✓ Early Detection
 ✓ Early Intervention

- A big part of prevention is early detection. There's been recent progress in the development of multi-cancer early detection tests. What are your thoughts about these tests?
- The big question is: Can we detect the cancer at an early enough stage that we reduce the risk of death from that cancer? That's the litmus test for any cancer screening test.

LIQUID BIOPSY 6

A new, noninvasive technique that can detect disease biomarkers in:

LIQUID BIOPSY IS USEFUL WHEN:

- not enough tissue sample is available
- not enough tumor tissue is in a sample
- a tumor is hard to reach
- regular monitoring is needed

LIQUID BIOPSIES ARE ANALYZED FOR:

- presence of cancer cells
- DNA
- other substances released by tumors

cancer.gov

"Interception" Research

✓ Prevention
 ✓ Early Detection
 ✓ Early Intervention

Integrating Longitudinal Deep Phenotyping

Yurkovich, Nat Rev Clin Oncol 17:183, 2020

The computable cell: In silico modeling

Efficacy

Gough, Science Signaling 8:408, 2015

Explore Individual Variability

Armamentarium to predict biological and behavioral response patterns Diet assessment (e.g, biomarkers for assessment of diet)

Genetic variation (e.g., studies that collect genetic data; ancestral heritage)

Epigenetic variation (e.g., assessment of epigenetic changes that alter metabolism and chronic disease)

Microbiome variation (e.g., effects of diet on microbiota populations and function)

Exposure variation (e.g., methods to assess environmental exposures)

Lifestyle variation (e.g., better biomarkers, instruments to assess lifestyle & behavior patterns)

Systems biology (e.g., utilize tools to assess interactions between "omic" data sets, e.g., to <u>predict outcomes</u>)

Translation to practice and policy (e.g., develop training programs in precision nutrition-guided interventions; conduct advanced evidence synthesis and dietary guidance on nutrients, foods and dietary patterns)

Zeisel, Frontiers Genetics 10:200, 2019

Systems Biology

Use of a virtual machine learning KO tool (scTenifoldKn) to predict transcriptional changes related to stem cell reprogramming

scRNAseq data

NATIONAL CANCER INSTITUTE

PREVENT Cancer Preclinical Drug Development Program (PREVENT) supports the best ideas in cancer prevention using NCI contract resources

- Immunotherapy is now being studied as a potential way to help prevent cancer. Where does this research stand?
- Immunotherapy has been a great advance for cancer treatment. So this "immunoprevention" research is essentially looking at whether we can harness the <u>immune system</u> as a form of cancer surveillance, to detect and snuff out cells with the earliest changes that will lead to cancer.
- A new initiative to promote the discovery of preventive therapies, and that will include some immunoprevention drugs. In particular, we're expanding activities around developing preventive agents for those at high risk for cancer, <u>such as those with a genetic predisposition like Lynch syndrome</u>. The idea is to start this work with a focus on the highest-risk groups.

The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies

- Diet and exercise are areas of intense interest in cancer prevention. Where do you think these two areas fit into the overall prevention picture?
- The thought is definitely out there that if you eat this specific thing or avoid this other thing, you'll prevent cancer. Unfortunately, no specific foods or activities are proven to prevent cancer, except perhaps avoiding cooked red meat, and there are numerous factors that make research to identify such factors difficult to do.
- We know that obesity increases the risk for about 13 cancers. And we know that a healthy lifestyle, including weight management, will likely reduce your cancer risk. Of course, not everyone has equal access to healthy foods and things that promote healthy behaviors and much of that is influenced by policy matters.

Arch Intern Med. 2009;169(15):1355-1362

Healthy Living Is the Best Revenge

Findings From the European Prospective Investigation Into Cancer and Nutrition–Potsdam Study

 ✓ 4 Factors Reduce Risk of Developing Chronic Disease by 78% and Cancer by 36%

✓ Have a Body Mass Index < 30

✓ Never Smoke

✓ Perform 3.5 h/wk or more Physical Exercise

 ✓ Adhere to Healthy Dietary Principles (High Intake of Fruits, Vegetables, Whole-Grain Bread and Low Meat Consumption)

Dietary Chemoprevention: The missing ingredient

Human Malignancies are linked to:

35% to diet, 14-20% to obesity

Coussens, L.M., *Science* 339:286, 2013

Nutrition, inflammation and cancer

Nutrition quality and quantity

Nutrition, inflammation and cancer

Zitvogel, Nature Immunol 18:843, 2017

Martucci, Nutr Rev 75:442, 2017

Also PRETTY SURE that Intentional Weight Loss Reduces Risk for Several Cancers

...at least among <u>adult</u> women and for obesity-related cancers

Parker, Intl J Obes Relat Metab Dis 27:1447, 2003

Similar data Miyagi Cohort (>10,000 Japanese women) - Kawai, Br J Cancer, Sept 2010

Cietary Approaches to Cancer Therapy

Figure 6. Rational Combinations of Diets and Drug-Based Therapies

Tajan, Cancer Cell 37:767, 2020

Precision Prevention and Early Detection of Cancer: Fundamental Principles

Principle	Key concepts
Risk quantification	Identification of individuals who will maximally benefit from prevention or early-detection strategies based on genetic, molecular, and other biomarker information. Risk may be conferred by inheritance, existence of preneoplastic condition, or exposure.
Mechanistic foundation	An understanding of the basic biology of early carcinogenesis events, including genomic susceptibility, metabolic reprogramming, drivers of preneoplasia, the tumor microenvironment, immune modulation, and biomarkers that may define etiologic and risk heterogeneity.
Heterogeneity in phenotype and response	Preventive interventions or early-detection strategies may have different efficacy and toxicities in certain individuals based on their biological characteristics.

Principle	Key concepts
Timing	A prevention "sweet spot" may exist in terms of the timing of the preventive intervention or detection method. Optimal timing of preventive interventions or early-detection strategies requires a clear understanding of the etiologic window in which carcinogenic events are working.
Effective prevention modalities	Effective interventions including risk-reducing surgery to remove tissue at risk, exposure modification, vaccination including immunoprevention, chemoprevention, treatment or removal of premalignant lesions, screening and early-detection methods based on molecular events. The optimal application of these interventions may depend on an individual's underlying risk profile.
Consideration of unintended effects	Favorable risk-benefit ratios for patients and/or cost-benefit ratios to governments or insurers may exist. Some very high-risk individuals may accept more intensive/invasive extreme preventive strategies (that may confer higher levels of toxicity) that would not be acceptable to the general population.

NCI BUDGET FISCAL YEAR 2019

 ✓ Less than 1.5% of total biomedical research funding is devoted to prevention programs

(Colditz, *Sci Transl Med 4*:127rv4, 2012; Ludwig, *Science* 362:764, 2018)

Note: NCI also received \$400 million in FY 2019 for the Beau Biden Cancer Moonshot, which was authorized in the 21st Century Cures Act of 2016. cancer.gov/about-nci/budget

Advisor		
Advisor Personal funding matches (5)	Deadline	Amount
new <u>Cancer Prevention-Interception Targeted Agent</u> <u>Discovery Program (CAP-IT) Centers (U54 Clinical Trial</u> <u>Not Allowed)</u> National Institutes of Health (NIH) United States Department of Health and Human Services (HHS)	October 7, 2021 Confirmed	<u>see record</u>
new <u>Cancer Prevention-Interception Targeted Agent</u> <u>Discovery Program (CAP-IT) Data and Resource</u> <u>Coordination Center (CAP-IT DRCC) (U24 Clinical Trial</u> <u>Not Allowed)</u> National Institutes of Health (NIH) United States Department of Health and Human Services (HHS)	September 7, 2021 Confirmed	\$240,000